Cargando…
Cerebellar Transcranial Direct Current Stimulation (ctDCS): A Novel Approach to Understanding Cerebellar Function in Health and Disease
The cerebellum is critical for both motor and cognitive control. Dysfunction of the cerebellum is a component of multiple neurological disorders. In recent years, interventions have been developed that aim to excite or inhibit the activity and function of the human cerebellum. Transcranial direct cu...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4712385/ https://www.ncbi.nlm.nih.gov/pubmed/25406224 http://dx.doi.org/10.1177/1073858414559409 |
_version_ | 1782410058014916608 |
---|---|
author | Grimaldi, Giuliana Argyropoulos, Georgios P. Bastian, Amy Cortes, Mar Davis, Nicholas J. Edwards, Dylan J. Ferrucci, Roberta Fregni, Felipe Galea, Joseph M. Hamada, Masahi Manto, Mario Miall, R. Chris Morales-Quezada, Leon Pope, Paul A. Priori, Alberto Rothwell, John Tomlinson, S. Paul Celnik, Pablo |
author_facet | Grimaldi, Giuliana Argyropoulos, Georgios P. Bastian, Amy Cortes, Mar Davis, Nicholas J. Edwards, Dylan J. Ferrucci, Roberta Fregni, Felipe Galea, Joseph M. Hamada, Masahi Manto, Mario Miall, R. Chris Morales-Quezada, Leon Pope, Paul A. Priori, Alberto Rothwell, John Tomlinson, S. Paul Celnik, Pablo |
author_sort | Grimaldi, Giuliana |
collection | PubMed |
description | The cerebellum is critical for both motor and cognitive control. Dysfunction of the cerebellum is a component of multiple neurological disorders. In recent years, interventions have been developed that aim to excite or inhibit the activity and function of the human cerebellum. Transcranial direct current stimulation of the cerebellum (ctDCS) promises to be a powerful tool for the modulation of cerebellar excitability. This technique has gained popularity in recent years as it can be used to investigate human cerebellar function, is easily delivered, is well tolerated, and has not shown serious adverse effects. Importantly, the ability of ctDCS to modify behavior makes it an interesting approach with a potential therapeutic role for neurological patients. Through both electrical and non-electrical effects (vascular, metabolic) ctDCS is thought to modify the activity of the cerebellum and alter the output from cerebellar nuclei. Physiological studies have shown a polarity-specific effect on the modulation of cerebellar–motor cortex connectivity, likely via cerebellar–thalamocortical pathways. Modeling studies that have assessed commonly used electrode montages have shown that the ctDCS-generated electric field reaches the human cerebellum with little diffusion to neighboring structures. The posterior and inferior parts of the cerebellum (i.e., lobules VI-VIII) seem particularly susceptible to modulation by ctDCS. Numerous studies have shown to date that ctDCS can modulate motor learning, and affect cognitive and emotional processes. Importantly, this intervention has a good safety profile; similar to when applied over cerebral areas. Thus, investigations have begun exploring ctDCS as a viable intervention for patients with neurological conditions. |
format | Online Article Text |
id | pubmed-4712385 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-47123852016-01-31 Cerebellar Transcranial Direct Current Stimulation (ctDCS): A Novel Approach to Understanding Cerebellar Function in Health and Disease Grimaldi, Giuliana Argyropoulos, Georgios P. Bastian, Amy Cortes, Mar Davis, Nicholas J. Edwards, Dylan J. Ferrucci, Roberta Fregni, Felipe Galea, Joseph M. Hamada, Masahi Manto, Mario Miall, R. Chris Morales-Quezada, Leon Pope, Paul A. Priori, Alberto Rothwell, John Tomlinson, S. Paul Celnik, Pablo Neuroscientist Reviews The cerebellum is critical for both motor and cognitive control. Dysfunction of the cerebellum is a component of multiple neurological disorders. In recent years, interventions have been developed that aim to excite or inhibit the activity and function of the human cerebellum. Transcranial direct current stimulation of the cerebellum (ctDCS) promises to be a powerful tool for the modulation of cerebellar excitability. This technique has gained popularity in recent years as it can be used to investigate human cerebellar function, is easily delivered, is well tolerated, and has not shown serious adverse effects. Importantly, the ability of ctDCS to modify behavior makes it an interesting approach with a potential therapeutic role for neurological patients. Through both electrical and non-electrical effects (vascular, metabolic) ctDCS is thought to modify the activity of the cerebellum and alter the output from cerebellar nuclei. Physiological studies have shown a polarity-specific effect on the modulation of cerebellar–motor cortex connectivity, likely via cerebellar–thalamocortical pathways. Modeling studies that have assessed commonly used electrode montages have shown that the ctDCS-generated electric field reaches the human cerebellum with little diffusion to neighboring structures. The posterior and inferior parts of the cerebellum (i.e., lobules VI-VIII) seem particularly susceptible to modulation by ctDCS. Numerous studies have shown to date that ctDCS can modulate motor learning, and affect cognitive and emotional processes. Importantly, this intervention has a good safety profile; similar to when applied over cerebral areas. Thus, investigations have begun exploring ctDCS as a viable intervention for patients with neurological conditions. SAGE Publications 2016-02 /pmc/articles/PMC4712385/ /pubmed/25406224 http://dx.doi.org/10.1177/1073858414559409 Text en © The Author(s) 2014 http://creativecommons.org/licenses/by/3.0/ This article is distributed under the terms of the Creative Commons Attribution 3.0 License (http://www.creativecommons.org/licenses/by/3.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (http://www.uk.sagepub.com/aboutus/openaccess.htm). |
spellingShingle | Reviews Grimaldi, Giuliana Argyropoulos, Georgios P. Bastian, Amy Cortes, Mar Davis, Nicholas J. Edwards, Dylan J. Ferrucci, Roberta Fregni, Felipe Galea, Joseph M. Hamada, Masahi Manto, Mario Miall, R. Chris Morales-Quezada, Leon Pope, Paul A. Priori, Alberto Rothwell, John Tomlinson, S. Paul Celnik, Pablo Cerebellar Transcranial Direct Current Stimulation (ctDCS): A Novel Approach to Understanding Cerebellar Function in Health and Disease |
title | Cerebellar Transcranial Direct Current Stimulation (ctDCS): A Novel Approach to Understanding Cerebellar Function in Health and Disease |
title_full | Cerebellar Transcranial Direct Current Stimulation (ctDCS): A Novel Approach to Understanding Cerebellar Function in Health and Disease |
title_fullStr | Cerebellar Transcranial Direct Current Stimulation (ctDCS): A Novel Approach to Understanding Cerebellar Function in Health and Disease |
title_full_unstemmed | Cerebellar Transcranial Direct Current Stimulation (ctDCS): A Novel Approach to Understanding Cerebellar Function in Health and Disease |
title_short | Cerebellar Transcranial Direct Current Stimulation (ctDCS): A Novel Approach to Understanding Cerebellar Function in Health and Disease |
title_sort | cerebellar transcranial direct current stimulation (ctdcs): a novel approach to understanding cerebellar function in health and disease |
topic | Reviews |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4712385/ https://www.ncbi.nlm.nih.gov/pubmed/25406224 http://dx.doi.org/10.1177/1073858414559409 |
work_keys_str_mv | AT grimaldigiuliana cerebellartranscranialdirectcurrentstimulationctdcsanovelapproachtounderstandingcerebellarfunctioninhealthanddisease AT argyropoulosgeorgiosp cerebellartranscranialdirectcurrentstimulationctdcsanovelapproachtounderstandingcerebellarfunctioninhealthanddisease AT bastianamy cerebellartranscranialdirectcurrentstimulationctdcsanovelapproachtounderstandingcerebellarfunctioninhealthanddisease AT cortesmar cerebellartranscranialdirectcurrentstimulationctdcsanovelapproachtounderstandingcerebellarfunctioninhealthanddisease AT davisnicholasj cerebellartranscranialdirectcurrentstimulationctdcsanovelapproachtounderstandingcerebellarfunctioninhealthanddisease AT edwardsdylanj cerebellartranscranialdirectcurrentstimulationctdcsanovelapproachtounderstandingcerebellarfunctioninhealthanddisease AT ferrucciroberta cerebellartranscranialdirectcurrentstimulationctdcsanovelapproachtounderstandingcerebellarfunctioninhealthanddisease AT fregnifelipe cerebellartranscranialdirectcurrentstimulationctdcsanovelapproachtounderstandingcerebellarfunctioninhealthanddisease AT galeajosephm cerebellartranscranialdirectcurrentstimulationctdcsanovelapproachtounderstandingcerebellarfunctioninhealthanddisease AT hamadamasahi cerebellartranscranialdirectcurrentstimulationctdcsanovelapproachtounderstandingcerebellarfunctioninhealthanddisease AT mantomario cerebellartranscranialdirectcurrentstimulationctdcsanovelapproachtounderstandingcerebellarfunctioninhealthanddisease AT miallrchris cerebellartranscranialdirectcurrentstimulationctdcsanovelapproachtounderstandingcerebellarfunctioninhealthanddisease AT moralesquezadaleon cerebellartranscranialdirectcurrentstimulationctdcsanovelapproachtounderstandingcerebellarfunctioninhealthanddisease AT popepaula cerebellartranscranialdirectcurrentstimulationctdcsanovelapproachtounderstandingcerebellarfunctioninhealthanddisease AT priorialberto cerebellartranscranialdirectcurrentstimulationctdcsanovelapproachtounderstandingcerebellarfunctioninhealthanddisease AT rothwelljohn cerebellartranscranialdirectcurrentstimulationctdcsanovelapproachtounderstandingcerebellarfunctioninhealthanddisease AT tomlinsonspaul cerebellartranscranialdirectcurrentstimulationctdcsanovelapproachtounderstandingcerebellarfunctioninhealthanddisease AT celnikpablo cerebellartranscranialdirectcurrentstimulationctdcsanovelapproachtounderstandingcerebellarfunctioninhealthanddisease |