Cargando…
Iteratively refining breast cancer intrinsic subtypes in the METABRIC dataset
BACKGROUND: Multi-gene lists and single sample predictor models have been currently used to reduce the multidimensional complexity of breast cancers, and to identify intrinsic subtypes. The perceived inability of some models to deal with the challenges of processing high-dimensional data, however, l...
Autores principales: | Milioli, Heloisa H., Vimieiro, Renato, Tishchenko, Inna, Riveros, Carlos, Berretta, Regina, Moscato, Pablo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4712506/ https://www.ncbi.nlm.nih.gov/pubmed/26770261 http://dx.doi.org/10.1186/s13040-015-0078-9 |
Ejemplares similares
-
The Discovery of Novel Biomarkers Improves Breast Cancer Intrinsic Subtype Prediction and Reconciles the Labels in the METABRIC Data Set
por: Milioli, Heloisa Helena, et al.
Publicado: (2015) -
Basal-like breast cancer: molecular profiles, clinical features and survival outcomes
por: Milioli, Heloisa H., et al.
Publicado: (2017) -
Extensive Transcriptomic and Genomic Analysis Provides New Insights about Luminal Breast Cancers
por: Tishchenko, Inna, et al.
Publicado: (2016) -
Alzheimer’s disease patient groups derived from a multivariate analysis of cognitive test outcomes in the Coalition Against Major Diseases dataset
por: Tishchenko, Inna, et al.
Publicado: (2016) -
A New Combinatorial Optimization Approach for Integrated Feature Selection Using Different Datasets: A Prostate Cancer Transcriptomic Study
por: Puthiyedth, Nisha, et al.
Publicado: (2015)