Cargando…

Do Emotions Expressed Online Correlate with Actual Changes in Decision-Making?: The Case of Stock Day Traders

Emotions are increasingly inferred linguistically from online data with a goal of predicting off-line behavior. Yet, it is unknown whether emotions inferred linguistically from online communications correlate with actual changes in off-line activity. We analyzed all 886,000 trading decisions and 1,2...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Bin, Govindan, Ramesh, Uzzi, Brian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4713085/
https://www.ncbi.nlm.nih.gov/pubmed/26765539
http://dx.doi.org/10.1371/journal.pone.0144945
Descripción
Sumario:Emotions are increasingly inferred linguistically from online data with a goal of predicting off-line behavior. Yet, it is unknown whether emotions inferred linguistically from online communications correlate with actual changes in off-line activity. We analyzed all 886,000 trading decisions and 1,234,822 instant messages of 30 professional day traders over a continuous 2 year period. Linguistically inferring the traders’ emotional states from instant messages, we find that emotions expressed in online communications reflect the same distributions of emotions found in controlled experiments done on traders. Further, we find that expressed online emotions predict the profitability of actual trading behavior. Relative to their baselines, traders who expressed little emotion or traders that expressed high levels of emotion made relatively unprofitable trades. Conversely, traders expressing moderate levels of emotional activation made relatively profitable trades.