Cargando…
A semi‐supervised Support Vector Machine model for predicting the language outcomes following cochlear implantation based on pre‐implant brain fMRI imaging
INTRODUCTION: We developed a machine learning model to predict whether or not a cochlear implant (CI) candidate will develop effective language skills within 2 years after the CI surgery by using the pre‐implant brain fMRI data from the candidate. METHODS: The language performance was measured 2 yea...
Autores principales: | Tan, Lirong, Holland, Scott K., Deshpande, Aniruddha K., Chen, Ye, Choo, Daniel I., Lu, Long J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4714644/ https://www.ncbi.nlm.nih.gov/pubmed/26807332 http://dx.doi.org/10.1002/brb3.391 |
Ejemplares similares
-
Language evaluation in children with pre-lingual hearing loss and cochlear implant()()
por: Scarabello, Emille Mayara, et al.
Publicado: (2018) -
Functional parcellation of the hippocampus by semi-supervised clustering of resting state fMRI data
por: Cheng, Hewei, et al.
Publicado: (2020) -
Language development after cochlear implantation: an epigenetic model
por: Markman, Timothy M., et al.
Publicado: (2011) -
Language development in the pediatric cochlear implant patient
por: Ruben, Robert J.
Publicado: (2018) -
Training to Improve Language Outcomes in Cochlear Implant Recipients
por: Ingvalson, Erin M., et al.
Publicado: (2013)