Cargando…
A Spatial Framework for Understanding Population Structure and Admixture
Geographic patterns of genetic variation within modern populations, produced by complex histories of migration, can be difficult to infer and visually summarize. A general consequence of geographically limited dispersal is that samples from nearby locations tend to be more closely related than sampl...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4714911/ https://www.ncbi.nlm.nih.gov/pubmed/26771578 http://dx.doi.org/10.1371/journal.pgen.1005703 |
_version_ | 1782410388694892544 |
---|---|
author | Bradburd, Gideon S. Ralph, Peter L. Coop, Graham M. |
author_facet | Bradburd, Gideon S. Ralph, Peter L. Coop, Graham M. |
author_sort | Bradburd, Gideon S. |
collection | PubMed |
description | Geographic patterns of genetic variation within modern populations, produced by complex histories of migration, can be difficult to infer and visually summarize. A general consequence of geographically limited dispersal is that samples from nearby locations tend to be more closely related than samples from distant locations, and so genetic covariance often recapitulates geographic proximity. We use genome-wide polymorphism data to build “geogenetic maps,” which, when applied to stationary populations, produces a map of the geographic positions of the populations, but with distances distorted to reflect historical rates of gene flow. In the underlying model, allele frequency covariance is a decreasing function of geogenetic distance, and nonlocal gene flow such as admixture can be identified as anomalously strong covariance over long distances. This admixture is explicitly co-estimated and depicted as arrows, from the source of admixture to the recipient, on the geogenetic map. We demonstrate the utility of this method on a circum-Tibetan sampling of the greenish warbler (Phylloscopus trochiloides), in which we find evidence for gene flow between the adjacent, terminal populations of the ring species. We also analyze a global sampling of human populations, for which we largely recover the geography of the sampling, with support for significant histories of admixture in many samples. This new tool for understanding and visualizing patterns of population structure is implemented in a Bayesian framework in the program SpaceMix. |
format | Online Article Text |
id | pubmed-4714911 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-47149112016-01-30 A Spatial Framework for Understanding Population Structure and Admixture Bradburd, Gideon S. Ralph, Peter L. Coop, Graham M. PLoS Genet Research Article Geographic patterns of genetic variation within modern populations, produced by complex histories of migration, can be difficult to infer and visually summarize. A general consequence of geographically limited dispersal is that samples from nearby locations tend to be more closely related than samples from distant locations, and so genetic covariance often recapitulates geographic proximity. We use genome-wide polymorphism data to build “geogenetic maps,” which, when applied to stationary populations, produces a map of the geographic positions of the populations, but with distances distorted to reflect historical rates of gene flow. In the underlying model, allele frequency covariance is a decreasing function of geogenetic distance, and nonlocal gene flow such as admixture can be identified as anomalously strong covariance over long distances. This admixture is explicitly co-estimated and depicted as arrows, from the source of admixture to the recipient, on the geogenetic map. We demonstrate the utility of this method on a circum-Tibetan sampling of the greenish warbler (Phylloscopus trochiloides), in which we find evidence for gene flow between the adjacent, terminal populations of the ring species. We also analyze a global sampling of human populations, for which we largely recover the geography of the sampling, with support for significant histories of admixture in many samples. This new tool for understanding and visualizing patterns of population structure is implemented in a Bayesian framework in the program SpaceMix. Public Library of Science 2016-01-15 /pmc/articles/PMC4714911/ /pubmed/26771578 http://dx.doi.org/10.1371/journal.pgen.1005703 Text en © 2016 Bradburd et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Bradburd, Gideon S. Ralph, Peter L. Coop, Graham M. A Spatial Framework for Understanding Population Structure and Admixture |
title | A Spatial Framework for Understanding Population Structure and Admixture |
title_full | A Spatial Framework for Understanding Population Structure and Admixture |
title_fullStr | A Spatial Framework for Understanding Population Structure and Admixture |
title_full_unstemmed | A Spatial Framework for Understanding Population Structure and Admixture |
title_short | A Spatial Framework for Understanding Population Structure and Admixture |
title_sort | spatial framework for understanding population structure and admixture |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4714911/ https://www.ncbi.nlm.nih.gov/pubmed/26771578 http://dx.doi.org/10.1371/journal.pgen.1005703 |
work_keys_str_mv | AT bradburdgideons aspatialframeworkforunderstandingpopulationstructureandadmixture AT ralphpeterl aspatialframeworkforunderstandingpopulationstructureandadmixture AT coopgrahamm aspatialframeworkforunderstandingpopulationstructureandadmixture AT bradburdgideons spatialframeworkforunderstandingpopulationstructureandadmixture AT ralphpeterl spatialframeworkforunderstandingpopulationstructureandadmixture AT coopgrahamm spatialframeworkforunderstandingpopulationstructureandadmixture |