Cargando…

Smads as therapeutic targets for chronic kidney disease

Renal fibrosis is a hallmark of chronic kidney disease (CKD). It is generally thought that transforming growth factor-β1 (TGF-β1) is a key mediator of fibrosis and mediates renal scarring positively by Smad2 and Smad3, but negatively by Smad7. Our recent studies found that in CKD, TGF-β1 is not a so...

Descripción completa

Detalles Bibliográficos
Autor principal: Lan, Hui Yao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4715089/
https://www.ncbi.nlm.nih.gov/pubmed/26889404
http://dx.doi.org/10.1016/j.krcp.2011.12.001
_version_ 1782410413854425088
author Lan, Hui Yao
author_facet Lan, Hui Yao
author_sort Lan, Hui Yao
collection PubMed
description Renal fibrosis is a hallmark of chronic kidney disease (CKD). It is generally thought that transforming growth factor-β1 (TGF-β1) is a key mediator of fibrosis and mediates renal scarring positively by Smad2 and Smad3, but negatively by Smad7. Our recent studies found that in CKD, TGF-β1 is not a sole molecule to activate Smads. Many mediators such as angiotensin II and advanced glycation end products can also activate Smads via both TGF-β-dependent and independent mechanisms. In addition, Smads can interact with other signaling pathways, such as the mitogen-activated protein kinase and nuclear factor-kappaB (NF-κB) pathways, to regulate renal inflammation and fibrosis. In CKD, Smad2 and Smad3 are highly activated, while Smad7 is reduced or lost. In the context of fibrosis, Smad3 is pathogenic and mediates renal fibrosis by upregulating miR-21 and miR-192, but down-regulating miR-29 and miR-200 families. By contrast, Smad2 and Smad7 are protective. Overexpression of Smad7 inhibits both Smad3-mediated renal fibrosis and NF-κB-driven renal inflammation. Interestingly, Smad4 has diverse roles in renal fibrosis and inflammation. The complexity and distinct roles of individual Smads in CKD suggest that treatment of CKD should aim to correct the imbalance of Smad signaling or target the Smad3-dependent genes related to fibrosis, rather than to block the general effect of TGF-β1. Thus, treatment of CKD by overexpression of Smad7 or targeting Smad3-dependent miRNAs such as downregulation of miR-21 or overexpression of miR-29 may represent novel therapeutic strategies for CKD.
format Online
Article
Text
id pubmed-4715089
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-47150892016-02-17 Smads as therapeutic targets for chronic kidney disease Lan, Hui Yao Kidney Res Clin Pract Review Article Renal fibrosis is a hallmark of chronic kidney disease (CKD). It is generally thought that transforming growth factor-β1 (TGF-β1) is a key mediator of fibrosis and mediates renal scarring positively by Smad2 and Smad3, but negatively by Smad7. Our recent studies found that in CKD, TGF-β1 is not a sole molecule to activate Smads. Many mediators such as angiotensin II and advanced glycation end products can also activate Smads via both TGF-β-dependent and independent mechanisms. In addition, Smads can interact with other signaling pathways, such as the mitogen-activated protein kinase and nuclear factor-kappaB (NF-κB) pathways, to regulate renal inflammation and fibrosis. In CKD, Smad2 and Smad3 are highly activated, while Smad7 is reduced or lost. In the context of fibrosis, Smad3 is pathogenic and mediates renal fibrosis by upregulating miR-21 and miR-192, but down-regulating miR-29 and miR-200 families. By contrast, Smad2 and Smad7 are protective. Overexpression of Smad7 inhibits both Smad3-mediated renal fibrosis and NF-κB-driven renal inflammation. Interestingly, Smad4 has diverse roles in renal fibrosis and inflammation. The complexity and distinct roles of individual Smads in CKD suggest that treatment of CKD should aim to correct the imbalance of Smad signaling or target the Smad3-dependent genes related to fibrosis, rather than to block the general effect of TGF-β1. Thus, treatment of CKD by overexpression of Smad7 or targeting Smad3-dependent miRNAs such as downregulation of miR-21 or overexpression of miR-29 may represent novel therapeutic strategies for CKD. Elsevier 2012-03 2012-01-06 /pmc/articles/PMC4715089/ /pubmed/26889404 http://dx.doi.org/10.1016/j.krcp.2011.12.001 Text en © 2012. The Korean Society of Nephrology. Published by Elsevier. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Review Article
Lan, Hui Yao
Smads as therapeutic targets for chronic kidney disease
title Smads as therapeutic targets for chronic kidney disease
title_full Smads as therapeutic targets for chronic kidney disease
title_fullStr Smads as therapeutic targets for chronic kidney disease
title_full_unstemmed Smads as therapeutic targets for chronic kidney disease
title_short Smads as therapeutic targets for chronic kidney disease
title_sort smads as therapeutic targets for chronic kidney disease
topic Review Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4715089/
https://www.ncbi.nlm.nih.gov/pubmed/26889404
http://dx.doi.org/10.1016/j.krcp.2011.12.001
work_keys_str_mv AT lanhuiyao smadsastherapeutictargetsforchronickidneydisease