Cargando…

Historical and current introgression in a Mesoamerican hummingbird species complex: a biogeographic perspective

The influence of geologic and Pleistocene glacial cycles might result in morphological and genetic complex scenarios in the biota of the Mesoamerican region. We tested whether berylline, blue-tailed and steely-blue hummingbirds, Amazilia beryllina, Amazilia cyanura and Amazilia saucerottei, show evi...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiménez, Rosa Alicia, Ornelas, Juan Francisco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4715438/
https://www.ncbi.nlm.nih.gov/pubmed/26788433
http://dx.doi.org/10.7717/peerj.1556
_version_ 1782410476264620032
author Jiménez, Rosa Alicia
Ornelas, Juan Francisco
author_facet Jiménez, Rosa Alicia
Ornelas, Juan Francisco
author_sort Jiménez, Rosa Alicia
collection PubMed
description The influence of geologic and Pleistocene glacial cycles might result in morphological and genetic complex scenarios in the biota of the Mesoamerican region. We tested whether berylline, blue-tailed and steely-blue hummingbirds, Amazilia beryllina, Amazilia cyanura and Amazilia saucerottei, show evidence of historical or current introgression as their plumage colour variation might suggest. We also analysed the role of past and present climatic events in promoting genetic introgression and species diversification. We collected mitochondrial DNA (mtDNA) sequence data and microsatellite loci scores for populations throughout the range of the three Amazilia species, as well as morphological and ecological data. Haplotype network, Bayesian phylogenetic and divergence time inference, historical demography, palaeodistribution modelling, and niche divergence tests were used to reconstruct the evolutionary history of this Amazilia species complex. An isolation-with-migration coalescent model and Bayesian assignment analysis were assessed to determine historical introgression and current genetic admixture. mtDNA haplotypes were geographically unstructured, with haplotypes from disparate areas interdispersed on a shallow tree and an unresolved haplotype network. Assignment analysis of the nuclear genome (nuDNA) supported three genetic groups with signs of genetic admixture, corresponding to: (1) A. beryllina populations located west of the Isthmus of Tehuantepec; (2) A. cyanura populations between the Isthmus of Tehuantepec and the Nicaraguan Depression (Nuclear Central America); and (3) A. saucerottei populations southeast of the Nicaraguan Depression. Gene flow and divergence time estimates, and demographic and palaeodistribution patterns suggest an evolutionary history of introgression mediated by Quaternary climatic fluctuations. High levels of gene flow were indicated by mtDNA and asymmetrical isolation-with-migration, whereas the microsatellite analyses found evidence for three genetic clusters with distributions corresponding to isolation by the Isthmus of Tehuantepec and the Nicaraguan Depression and signs of admixture. Historical levels of migration between genetically distinct groups estimated using microsatellites were higher than contemporary levels of migration. These results support the scenario of secondary contact and range contact during the glacial periods of the Pleistocene and strongly imply that the high levels of structure currently observed are a consequence of the limited dispersal of these hummingbirds across the isthmus and depression barriers.
format Online
Article
Text
id pubmed-4715438
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher PeerJ Inc.
record_format MEDLINE/PubMed
spelling pubmed-47154382016-01-19 Historical and current introgression in a Mesoamerican hummingbird species complex: a biogeographic perspective Jiménez, Rosa Alicia Ornelas, Juan Francisco PeerJ Biogeography The influence of geologic and Pleistocene glacial cycles might result in morphological and genetic complex scenarios in the biota of the Mesoamerican region. We tested whether berylline, blue-tailed and steely-blue hummingbirds, Amazilia beryllina, Amazilia cyanura and Amazilia saucerottei, show evidence of historical or current introgression as their plumage colour variation might suggest. We also analysed the role of past and present climatic events in promoting genetic introgression and species diversification. We collected mitochondrial DNA (mtDNA) sequence data and microsatellite loci scores for populations throughout the range of the three Amazilia species, as well as morphological and ecological data. Haplotype network, Bayesian phylogenetic and divergence time inference, historical demography, palaeodistribution modelling, and niche divergence tests were used to reconstruct the evolutionary history of this Amazilia species complex. An isolation-with-migration coalescent model and Bayesian assignment analysis were assessed to determine historical introgression and current genetic admixture. mtDNA haplotypes were geographically unstructured, with haplotypes from disparate areas interdispersed on a shallow tree and an unresolved haplotype network. Assignment analysis of the nuclear genome (nuDNA) supported three genetic groups with signs of genetic admixture, corresponding to: (1) A. beryllina populations located west of the Isthmus of Tehuantepec; (2) A. cyanura populations between the Isthmus of Tehuantepec and the Nicaraguan Depression (Nuclear Central America); and (3) A. saucerottei populations southeast of the Nicaraguan Depression. Gene flow and divergence time estimates, and demographic and palaeodistribution patterns suggest an evolutionary history of introgression mediated by Quaternary climatic fluctuations. High levels of gene flow were indicated by mtDNA and asymmetrical isolation-with-migration, whereas the microsatellite analyses found evidence for three genetic clusters with distributions corresponding to isolation by the Isthmus of Tehuantepec and the Nicaraguan Depression and signs of admixture. Historical levels of migration between genetically distinct groups estimated using microsatellites were higher than contemporary levels of migration. These results support the scenario of secondary contact and range contact during the glacial periods of the Pleistocene and strongly imply that the high levels of structure currently observed are a consequence of the limited dispersal of these hummingbirds across the isthmus and depression barriers. PeerJ Inc. 2016-01-12 /pmc/articles/PMC4715438/ /pubmed/26788433 http://dx.doi.org/10.7717/peerj.1556 Text en © 2016 Jiménez & Ornelas http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.
spellingShingle Biogeography
Jiménez, Rosa Alicia
Ornelas, Juan Francisco
Historical and current introgression in a Mesoamerican hummingbird species complex: a biogeographic perspective
title Historical and current introgression in a Mesoamerican hummingbird species complex: a biogeographic perspective
title_full Historical and current introgression in a Mesoamerican hummingbird species complex: a biogeographic perspective
title_fullStr Historical and current introgression in a Mesoamerican hummingbird species complex: a biogeographic perspective
title_full_unstemmed Historical and current introgression in a Mesoamerican hummingbird species complex: a biogeographic perspective
title_short Historical and current introgression in a Mesoamerican hummingbird species complex: a biogeographic perspective
title_sort historical and current introgression in a mesoamerican hummingbird species complex: a biogeographic perspective
topic Biogeography
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4715438/
https://www.ncbi.nlm.nih.gov/pubmed/26788433
http://dx.doi.org/10.7717/peerj.1556
work_keys_str_mv AT jimenezrosaalicia historicalandcurrentintrogressioninamesoamericanhummingbirdspeciescomplexabiogeographicperspective
AT ornelasjuanfrancisco historicalandcurrentintrogressioninamesoamericanhummingbirdspeciescomplexabiogeographicperspective