Cargando…

A multistage theory of age-specific acceleration in human mortality

BACKGROUND: Humans die at an increasing rate until late in life, when mortality rates level off. The causes of the late-life mortality plateau have been debated extensively over the past few years. Here, I examine mortality patterns separately for each of the leading causes of death. The different c...

Descripción completa

Detalles Bibliográficos
Autor principal: Frank, Steven A
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC471577/
https://www.ncbi.nlm.nih.gov/pubmed/15242520
http://dx.doi.org/10.1186/1741-7007-2-16
_version_ 1782121634171191296
author Frank, Steven A
author_facet Frank, Steven A
author_sort Frank, Steven A
collection PubMed
description BACKGROUND: Humans die at an increasing rate until late in life, when mortality rates level off. The causes of the late-life mortality plateau have been debated extensively over the past few years. Here, I examine mortality patterns separately for each of the leading causes of death. The different causes of death show distinct mortality patterns, providing some clues about the varying acceleration of mortality at different ages. RESULTS: I examine mortality patterns by first plotting the data of mortality rate versus age on a log-log scale. The slope of the age-specific mortality rate at each age is the age-specific acceleration of mortality. About one-half of total deaths have causes with similar shapes for the age-specific acceleration of mortality: a steady rise in acceleration from midlife until a well-defined peak at 80 years, followed by a nearly linear decline in acceleration. This first group of causes includes heart disease, cerebrovascular disease, and accidental deaths. A second group, accounting for about one-third of all deaths, follows a different pattern of age-specific acceleration. These diseases show an approximately linear rise in acceleration to a peak at 35–45 years of age, followed by a steep and steady decline in acceleration for the remainder of life. This second group includes cancer, chronic respiratory diseases, and liver disease. I develop a multistage model of disease progression to explain the observed patterns of mortality acceleration. CONCLUSIONS: A multistage model of disease progression can explain both the early-life increase and late-life decrease in mortality acceleration. An early-life rise in acceleration may be caused by increasing rates of transition between stages as individuals grow older. The late-life decline in acceleration may be caused by progression through earlier stages, leaving only a few stages remaining for older individuals.
format Text
id pubmed-471577
institution National Center for Biotechnology Information
language English
publishDate 2004
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-4715772004-07-17 A multistage theory of age-specific acceleration in human mortality Frank, Steven A BMC Biol Research Article BACKGROUND: Humans die at an increasing rate until late in life, when mortality rates level off. The causes of the late-life mortality plateau have been debated extensively over the past few years. Here, I examine mortality patterns separately for each of the leading causes of death. The different causes of death show distinct mortality patterns, providing some clues about the varying acceleration of mortality at different ages. RESULTS: I examine mortality patterns by first plotting the data of mortality rate versus age on a log-log scale. The slope of the age-specific mortality rate at each age is the age-specific acceleration of mortality. About one-half of total deaths have causes with similar shapes for the age-specific acceleration of mortality: a steady rise in acceleration from midlife until a well-defined peak at 80 years, followed by a nearly linear decline in acceleration. This first group of causes includes heart disease, cerebrovascular disease, and accidental deaths. A second group, accounting for about one-third of all deaths, follows a different pattern of age-specific acceleration. These diseases show an approximately linear rise in acceleration to a peak at 35–45 years of age, followed by a steep and steady decline in acceleration for the remainder of life. This second group includes cancer, chronic respiratory diseases, and liver disease. I develop a multistage model of disease progression to explain the observed patterns of mortality acceleration. CONCLUSIONS: A multistage model of disease progression can explain both the early-life increase and late-life decrease in mortality acceleration. An early-life rise in acceleration may be caused by increasing rates of transition between stages as individuals grow older. The late-life decline in acceleration may be caused by progression through earlier stages, leaving only a few stages remaining for older individuals. BioMed Central 2004-07-08 /pmc/articles/PMC471577/ /pubmed/15242520 http://dx.doi.org/10.1186/1741-7007-2-16 Text en Copyright © 2004 Frank; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.
spellingShingle Research Article
Frank, Steven A
A multistage theory of age-specific acceleration in human mortality
title A multistage theory of age-specific acceleration in human mortality
title_full A multistage theory of age-specific acceleration in human mortality
title_fullStr A multistage theory of age-specific acceleration in human mortality
title_full_unstemmed A multistage theory of age-specific acceleration in human mortality
title_short A multistage theory of age-specific acceleration in human mortality
title_sort multistage theory of age-specific acceleration in human mortality
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC471577/
https://www.ncbi.nlm.nih.gov/pubmed/15242520
http://dx.doi.org/10.1186/1741-7007-2-16
work_keys_str_mv AT frankstevena amultistagetheoryofagespecificaccelerationinhumanmortality
AT frankstevena multistagetheoryofagespecificaccelerationinhumanmortality