Cargando…

Antibacterial and Antimycotic Activity of Cotton Fabrics, Impregnated with Silver and Binary Silver/Copper Nanoparticles

Effective method of obtaining of the bactericidal bandage materials by impregnation of cotton fabric by aqueous solutions of silver and copper salts followed by a certain regime of heat treatment is developed. The study of obtained materials by methods of optical spectroscopy, electron microscopy, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Eremenko, A. M., Petrik, I. S., Smirnova, N. P., Rudenko, A. V., Marikvas, Y. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4717125/
https://www.ncbi.nlm.nih.gov/pubmed/26781286
http://dx.doi.org/10.1186/s11671-016-1240-0
Descripción
Sumario:Effective method of obtaining of the bactericidal bandage materials by impregnation of cotton fabric by aqueous solutions of silver and copper salts followed by a certain regime of heat treatment is developed. The study of obtained materials by methods of optical spectroscopy, electron microscopy, and X-ray phase analysis showed the formation of crystalline silver nanoparticles (NPs) and bimetallic Ag/Cu composites with the corresponding surface plasmon resonance (SPR) bands in the absorption spectra. High antimicrobial and antimycotic properties of tissues with low concentrations of Ag and Ag/Cu nanoparticles (Ag/Cu NPs) (in the range 0.06–0.25 weight percent (wt%) for Ag and 0.015–0.13 wt% for Ag/Cu) is confirmed in experiments with a wide range of multidrug-resistant bacteria and fungi: Escherichia coli, Enterobacter aerogenes, Proteus mirabilis, Klebsiella pneumoniae, Candida albicans yeasts, and micromycetes. Textile materials with Ag NPs demonstrate high antibacterial activity, while fabrics doped with bimetallic composite Ag/Cu have pronounced antimycotic properties. Bactericidal and antifungal properties of the obtained materials do not change after a washing. Production of such materials is extremely fast, convenient, and cost-effective.