Cargando…
The effect of gender on the neuroanatomy of children with autism spectrum disorders: a support vector machine case-control study
BACKGROUND: Genetic, hormonal, and environmental factors contribute since infancy to sexual dimorphism in regional brain structures of subjects with typical development. However, the neuroanatomical differences between male and female children with autism spectrum disorders (ASD) are an intriguing a...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4717545/ https://www.ncbi.nlm.nih.gov/pubmed/26788282 http://dx.doi.org/10.1186/s13229-015-0067-3 |
_version_ | 1782410669695434752 |
---|---|
author | Retico, Alessandra Giuliano, Alessia Tancredi, Raffaella Cosenza, Angela Apicella, Fabio Narzisi, Antonio Biagi, Laura Tosetti, Michela Muratori, Filippo Calderoni, Sara |
author_facet | Retico, Alessandra Giuliano, Alessia Tancredi, Raffaella Cosenza, Angela Apicella, Fabio Narzisi, Antonio Biagi, Laura Tosetti, Michela Muratori, Filippo Calderoni, Sara |
author_sort | Retico, Alessandra |
collection | PubMed |
description | BACKGROUND: Genetic, hormonal, and environmental factors contribute since infancy to sexual dimorphism in regional brain structures of subjects with typical development. However, the neuroanatomical differences between male and female children with autism spectrum disorders (ASD) are an intriguing and still poorly investigated issue. This study aims to evaluate whether the brain of young children with ASD exhibits sex-related structural differences and if a correlation exists between clinical ASD features and neuroanatomical underpinnings. METHODS: A total of 152 structural MRI scans were analysed. Specifically, 76 young children with ASD (38 males and 38 females; 2–7 years of age; mean = 53 months, standard deviation = 17 months) were evaluated employing a support vector machine (SVM)-based analysis of the grey matter (GM). Group comparisons consisted of 76 age-, gender- and non-verbal-intelligence quotient-matched children with typical development or idiopathic developmental delay without autism. RESULTS: For both genders combined, SVM showed a significantly increased GM volume in young children with ASD with respect to control subjects, predominantly in the bilateral superior frontal gyrus (Brodmann area –BA– 10), bilateral precuneus (BA 31), bilateral superior temporal gyrus (BA 20/22), whereas less GM in patients with ASD was found in right inferior temporal gyrus (BA 37). For the within gender comparisons (i.e., females with ASD vs. controls and males with ASD vs. controls), two overlapping regions in bilateral precuneus (BA 31) and left superior frontal gyrus (BA 9/10) were detected. Sex-by-group analyses revealed in males with ASD compared to matched controls two male-specific regions of increased GM volume (left middle occipital gyrus—BA 19—and right superior temporal gyrus—BA 22). Comparisons in females with and without ASD demonstrated increased GM volumes predominantly in the bilateral frontal regions. Additional regions of significantly increased GM volume in the right anterior cingulate cortex (BA 32) and right cerebellum were typical only of females with ASD. CONCLUSIONS: Despite the specific behavioural correlates of sex-dimorphism in ASD, brain morphology as yet remains unclear and requires future dedicated investigations. This study provides evidence of structural brain gender differences in young children with ASD that possibly contribute to the different phenotypic disease manifestations in males and females. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13229-015-0067-3) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4717545 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-47175452016-01-20 The effect of gender on the neuroanatomy of children with autism spectrum disorders: a support vector machine case-control study Retico, Alessandra Giuliano, Alessia Tancredi, Raffaella Cosenza, Angela Apicella, Fabio Narzisi, Antonio Biagi, Laura Tosetti, Michela Muratori, Filippo Calderoni, Sara Mol Autism Research BACKGROUND: Genetic, hormonal, and environmental factors contribute since infancy to sexual dimorphism in regional brain structures of subjects with typical development. However, the neuroanatomical differences between male and female children with autism spectrum disorders (ASD) are an intriguing and still poorly investigated issue. This study aims to evaluate whether the brain of young children with ASD exhibits sex-related structural differences and if a correlation exists between clinical ASD features and neuroanatomical underpinnings. METHODS: A total of 152 structural MRI scans were analysed. Specifically, 76 young children with ASD (38 males and 38 females; 2–7 years of age; mean = 53 months, standard deviation = 17 months) were evaluated employing a support vector machine (SVM)-based analysis of the grey matter (GM). Group comparisons consisted of 76 age-, gender- and non-verbal-intelligence quotient-matched children with typical development or idiopathic developmental delay without autism. RESULTS: For both genders combined, SVM showed a significantly increased GM volume in young children with ASD with respect to control subjects, predominantly in the bilateral superior frontal gyrus (Brodmann area –BA– 10), bilateral precuneus (BA 31), bilateral superior temporal gyrus (BA 20/22), whereas less GM in patients with ASD was found in right inferior temporal gyrus (BA 37). For the within gender comparisons (i.e., females with ASD vs. controls and males with ASD vs. controls), two overlapping regions in bilateral precuneus (BA 31) and left superior frontal gyrus (BA 9/10) were detected. Sex-by-group analyses revealed in males with ASD compared to matched controls two male-specific regions of increased GM volume (left middle occipital gyrus—BA 19—and right superior temporal gyrus—BA 22). Comparisons in females with and without ASD demonstrated increased GM volumes predominantly in the bilateral frontal regions. Additional regions of significantly increased GM volume in the right anterior cingulate cortex (BA 32) and right cerebellum were typical only of females with ASD. CONCLUSIONS: Despite the specific behavioural correlates of sex-dimorphism in ASD, brain morphology as yet remains unclear and requires future dedicated investigations. This study provides evidence of structural brain gender differences in young children with ASD that possibly contribute to the different phenotypic disease manifestations in males and females. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13229-015-0067-3) contains supplementary material, which is available to authorized users. BioMed Central 2016-01-19 /pmc/articles/PMC4717545/ /pubmed/26788282 http://dx.doi.org/10.1186/s13229-015-0067-3 Text en © Retico et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Retico, Alessandra Giuliano, Alessia Tancredi, Raffaella Cosenza, Angela Apicella, Fabio Narzisi, Antonio Biagi, Laura Tosetti, Michela Muratori, Filippo Calderoni, Sara The effect of gender on the neuroanatomy of children with autism spectrum disorders: a support vector machine case-control study |
title | The effect of gender on the neuroanatomy of children with autism spectrum disorders: a support vector machine case-control study |
title_full | The effect of gender on the neuroanatomy of children with autism spectrum disorders: a support vector machine case-control study |
title_fullStr | The effect of gender on the neuroanatomy of children with autism spectrum disorders: a support vector machine case-control study |
title_full_unstemmed | The effect of gender on the neuroanatomy of children with autism spectrum disorders: a support vector machine case-control study |
title_short | The effect of gender on the neuroanatomy of children with autism spectrum disorders: a support vector machine case-control study |
title_sort | effect of gender on the neuroanatomy of children with autism spectrum disorders: a support vector machine case-control study |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4717545/ https://www.ncbi.nlm.nih.gov/pubmed/26788282 http://dx.doi.org/10.1186/s13229-015-0067-3 |
work_keys_str_mv | AT reticoalessandra theeffectofgenderontheneuroanatomyofchildrenwithautismspectrumdisordersasupportvectormachinecasecontrolstudy AT giulianoalessia theeffectofgenderontheneuroanatomyofchildrenwithautismspectrumdisordersasupportvectormachinecasecontrolstudy AT tancrediraffaella theeffectofgenderontheneuroanatomyofchildrenwithautismspectrumdisordersasupportvectormachinecasecontrolstudy AT cosenzaangela theeffectofgenderontheneuroanatomyofchildrenwithautismspectrumdisordersasupportvectormachinecasecontrolstudy AT apicellafabio theeffectofgenderontheneuroanatomyofchildrenwithautismspectrumdisordersasupportvectormachinecasecontrolstudy AT narzisiantonio theeffectofgenderontheneuroanatomyofchildrenwithautismspectrumdisordersasupportvectormachinecasecontrolstudy AT biagilaura theeffectofgenderontheneuroanatomyofchildrenwithautismspectrumdisordersasupportvectormachinecasecontrolstudy AT tosettimichela theeffectofgenderontheneuroanatomyofchildrenwithautismspectrumdisordersasupportvectormachinecasecontrolstudy AT muratorifilippo theeffectofgenderontheneuroanatomyofchildrenwithautismspectrumdisordersasupportvectormachinecasecontrolstudy AT calderonisara theeffectofgenderontheneuroanatomyofchildrenwithautismspectrumdisordersasupportvectormachinecasecontrolstudy AT reticoalessandra effectofgenderontheneuroanatomyofchildrenwithautismspectrumdisordersasupportvectormachinecasecontrolstudy AT giulianoalessia effectofgenderontheneuroanatomyofchildrenwithautismspectrumdisordersasupportvectormachinecasecontrolstudy AT tancrediraffaella effectofgenderontheneuroanatomyofchildrenwithautismspectrumdisordersasupportvectormachinecasecontrolstudy AT cosenzaangela effectofgenderontheneuroanatomyofchildrenwithautismspectrumdisordersasupportvectormachinecasecontrolstudy AT apicellafabio effectofgenderontheneuroanatomyofchildrenwithautismspectrumdisordersasupportvectormachinecasecontrolstudy AT narzisiantonio effectofgenderontheneuroanatomyofchildrenwithautismspectrumdisordersasupportvectormachinecasecontrolstudy AT biagilaura effectofgenderontheneuroanatomyofchildrenwithautismspectrumdisordersasupportvectormachinecasecontrolstudy AT tosettimichela effectofgenderontheneuroanatomyofchildrenwithautismspectrumdisordersasupportvectormachinecasecontrolstudy AT muratorifilippo effectofgenderontheneuroanatomyofchildrenwithautismspectrumdisordersasupportvectormachinecasecontrolstudy AT calderonisara effectofgenderontheneuroanatomyofchildrenwithautismspectrumdisordersasupportvectormachinecasecontrolstudy |