Cargando…
Locally Embedding Autoencoders: A Semi-Supervised Manifold Learning Approach of Document Representation
Topic models and neural networks can discover meaningful low-dimensional latent representations of text corpora; as such, they have become a key technology of document representation. However, such models presume all documents are non-discriminatory, resulting in latent representation dependent upon...
Autores principales: | Wei, Chao, Luo, Senlin, Ma, Xincheng, Ren, Hao, Zhang, Ji, Pan, Limin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4718658/ https://www.ncbi.nlm.nih.gov/pubmed/26784692 http://dx.doi.org/10.1371/journal.pone.0146672 |
Ejemplares similares
-
Improved semi-supervised autoencoder for deception detection
por: Fu, Hongliang, et al.
Publicado: (2019) -
Semi-Supervised Learning for Defect Segmentation with Autoencoder Auxiliary Module
por: Sae-ang, Bee-ing, et al.
Publicado: (2022) -
Semi-Supervised Nests of Melanocytes Segmentation Method Using Convolutional Autoencoders
por: Kucharski, Dariusz, et al.
Publicado: (2020) -
Semi-Supervised Framework with Autoencoder-Based Neural Networks for Fault Prognosis
por: da Rosa, Tiago Gaspar, et al.
Publicado: (2022) -
Utilization of temporal autoencoder for semi-supervised intracranial EEG clustering and classification
por: Nejedly, Petr, et al.
Publicado: (2023)