Cargando…

Cell and Microvesicle Urine microRNA Deep Sequencing Profiles from Healthy Individuals: Observations with Potential Impact on Biomarker Studies

BACKGROUND: Urine is a potential source of biomarkers for diseases of the kidneys and urinary tract. RNA, including microRNA, is present in the urine enclosed in detached cells or in extracellular vesicles (EVs) or bound and protected by extracellular proteins. Detection of cell- and disease-specifi...

Descripción completa

Detalles Bibliográficos
Autores principales: Ben-Dov, Iddo Z., Whalen, Veronica M., Goilav, Beatrice, Max, Klaas E. A., Tuschl, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4718679/
https://www.ncbi.nlm.nih.gov/pubmed/26785265
http://dx.doi.org/10.1371/journal.pone.0147249
_version_ 1782410839222910976
author Ben-Dov, Iddo Z.
Whalen, Veronica M.
Goilav, Beatrice
Max, Klaas E. A.
Tuschl, Thomas
author_facet Ben-Dov, Iddo Z.
Whalen, Veronica M.
Goilav, Beatrice
Max, Klaas E. A.
Tuschl, Thomas
author_sort Ben-Dov, Iddo Z.
collection PubMed
description BACKGROUND: Urine is a potential source of biomarkers for diseases of the kidneys and urinary tract. RNA, including microRNA, is present in the urine enclosed in detached cells or in extracellular vesicles (EVs) or bound and protected by extracellular proteins. Detection of cell- and disease-specific microRNA in urine may aid early diagnosis of organ-specific pathology. In this study, we applied barcoded deep sequencing to profile microRNAs in urine of healthy volunteers, and characterized the effects of sex, urine fraction (cells vs. EVs) and repeated voids by the same individuals. RESULTS: Compared to urine-cell-derived small RNA libraries, urine-EV-derived libraries were relatively enriched with miRNA, and accordingly had lesser content of other small RNA such as rRNA, tRNA and sn/snoRNA. Unsupervised clustering of specimens in relation to miRNA expression levels showed prominent bundling by specimen type (urine cells or EVs) and by sex, as well as a tendency of repeated (first and second void) samples to neighbor closely. Likewise, miRNA profile correlations between void repeats, as well as fraction counterparts (cells and EVs from the same specimen) were distinctly higher than correlations between miRNA profiles overall. Differential miRNA expression by sex was similar in cells and EVs. CONCLUSIONS: miRNA profiling of both urine EVs and sediment cells can convey biologically important differences between individuals. However, to be useful as urine biomarkers, careful consideration is needed for biofluid fractionation and sex-specific analysis, while the time of voiding appears to be less important.
format Online
Article
Text
id pubmed-4718679
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-47186792016-01-30 Cell and Microvesicle Urine microRNA Deep Sequencing Profiles from Healthy Individuals: Observations with Potential Impact on Biomarker Studies Ben-Dov, Iddo Z. Whalen, Veronica M. Goilav, Beatrice Max, Klaas E. A. Tuschl, Thomas PLoS One Research Article BACKGROUND: Urine is a potential source of biomarkers for diseases of the kidneys and urinary tract. RNA, including microRNA, is present in the urine enclosed in detached cells or in extracellular vesicles (EVs) or bound and protected by extracellular proteins. Detection of cell- and disease-specific microRNA in urine may aid early diagnosis of organ-specific pathology. In this study, we applied barcoded deep sequencing to profile microRNAs in urine of healthy volunteers, and characterized the effects of sex, urine fraction (cells vs. EVs) and repeated voids by the same individuals. RESULTS: Compared to urine-cell-derived small RNA libraries, urine-EV-derived libraries were relatively enriched with miRNA, and accordingly had lesser content of other small RNA such as rRNA, tRNA and sn/snoRNA. Unsupervised clustering of specimens in relation to miRNA expression levels showed prominent bundling by specimen type (urine cells or EVs) and by sex, as well as a tendency of repeated (first and second void) samples to neighbor closely. Likewise, miRNA profile correlations between void repeats, as well as fraction counterparts (cells and EVs from the same specimen) were distinctly higher than correlations between miRNA profiles overall. Differential miRNA expression by sex was similar in cells and EVs. CONCLUSIONS: miRNA profiling of both urine EVs and sediment cells can convey biologically important differences between individuals. However, to be useful as urine biomarkers, careful consideration is needed for biofluid fractionation and sex-specific analysis, while the time of voiding appears to be less important. Public Library of Science 2016-01-19 /pmc/articles/PMC4718679/ /pubmed/26785265 http://dx.doi.org/10.1371/journal.pone.0147249 Text en © 2016 Ben-Dov et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Ben-Dov, Iddo Z.
Whalen, Veronica M.
Goilav, Beatrice
Max, Klaas E. A.
Tuschl, Thomas
Cell and Microvesicle Urine microRNA Deep Sequencing Profiles from Healthy Individuals: Observations with Potential Impact on Biomarker Studies
title Cell and Microvesicle Urine microRNA Deep Sequencing Profiles from Healthy Individuals: Observations with Potential Impact on Biomarker Studies
title_full Cell and Microvesicle Urine microRNA Deep Sequencing Profiles from Healthy Individuals: Observations with Potential Impact on Biomarker Studies
title_fullStr Cell and Microvesicle Urine microRNA Deep Sequencing Profiles from Healthy Individuals: Observations with Potential Impact on Biomarker Studies
title_full_unstemmed Cell and Microvesicle Urine microRNA Deep Sequencing Profiles from Healthy Individuals: Observations with Potential Impact on Biomarker Studies
title_short Cell and Microvesicle Urine microRNA Deep Sequencing Profiles from Healthy Individuals: Observations with Potential Impact on Biomarker Studies
title_sort cell and microvesicle urine microrna deep sequencing profiles from healthy individuals: observations with potential impact on biomarker studies
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4718679/
https://www.ncbi.nlm.nih.gov/pubmed/26785265
http://dx.doi.org/10.1371/journal.pone.0147249
work_keys_str_mv AT bendoviddoz cellandmicrovesicleurinemicrornadeepsequencingprofilesfromhealthyindividualsobservationswithpotentialimpactonbiomarkerstudies
AT whalenveronicam cellandmicrovesicleurinemicrornadeepsequencingprofilesfromhealthyindividualsobservationswithpotentialimpactonbiomarkerstudies
AT goilavbeatrice cellandmicrovesicleurinemicrornadeepsequencingprofilesfromhealthyindividualsobservationswithpotentialimpactonbiomarkerstudies
AT maxklaasea cellandmicrovesicleurinemicrornadeepsequencingprofilesfromhealthyindividualsobservationswithpotentialimpactonbiomarkerstudies
AT tuschlthomas cellandmicrovesicleurinemicrornadeepsequencingprofilesfromhealthyindividualsobservationswithpotentialimpactonbiomarkerstudies