Cargando…
A novel MVA-mediated pathway for isoprene production in engineered E. coli
BACKGROUND: To deal with the increasingly severe energy crisis and environmental consequences, biofuels and biochemicals generated from renewable resources could serve as a promising alternative for replacing petroleum as a source of fuel and chemicals, among which isoprene (2-methyl-1,3-butadiene)...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4719670/ https://www.ncbi.nlm.nih.gov/pubmed/26786050 http://dx.doi.org/10.1186/s12896-016-0236-2 |
_version_ | 1782410958202732544 |
---|---|
author | Yang, Jianming Nie, Qingjuan Liu, Hui Xian, Mo Liu, Huizhou |
author_facet | Yang, Jianming Nie, Qingjuan Liu, Hui Xian, Mo Liu, Huizhou |
author_sort | Yang, Jianming |
collection | PubMed |
description | BACKGROUND: To deal with the increasingly severe energy crisis and environmental consequences, biofuels and biochemicals generated from renewable resources could serve as a promising alternative for replacing petroleum as a source of fuel and chemicals, among which isoprene (2-methyl-1,3-butadiene) in particular is of great significance in that it is an important platform chemical, which has been used in industrial production of synthetic rubber for tires and coatings or aviation fuel. RESULTS: We firstly introduced fatty acid decarboxylase (OleT(JE)) from Jeotgalicoccus species into E. coli to directly convert MVA(mevalonate) into 3-methy-3-buten-1-ol. And then to transform 3-methy-3-buten-1-ol to isoprene, oleate hydratase (OhyA(EM)) from Elizabethkingia meningoseptica was overexpressed in E. coli. A novel biosynthetic pathway of isoprene in E. coli was established by co-expressing the heterologous mvaE gene encoding acetyl-CoA acetyltransferase/HMG-CoA reductase and mvaS gene encoding HMG-CoA synthase from Enterococcus faecalis, fatty acid decarboxylase (OleT(JE)) and oleate hydratase (OhyA(EM)). Furthermore, to enhance isoprene production, a further optimization of expression level of OleT(JE), OhyA(EM) was carried out by using different promoters and copy numbers of plasmids. Thereafter, the fermentation process was also optimized to improve the production of isoprene. The final engineered strain, YJM33, bearing the innovative biosynthetic pathway of isoprene, was found to produce isoprene up to 2.2 mg/L and 620 mg/L under flask and fed-batch fermentation conditions, respectively. CONCLUSIONS: In this study, by using metabolic engineering techniques, the novel MVA-mediated biosynthetic pathway of isoprene was successfully assembled in E. coli BL21(DE3) with the heterologous MVA upper pathway, OleT(JE) from Jeotgalicoccus species and OhyA(EM) from Elizabethkingia meningoseptica. Compared with traditional MVA pathway, the novel pathway is shortened by 3 steps. In addition, this is the first report on the reaction of converting MVA into 3-methy-3-buten-1-ol by fatty acid decarboxylase (OleT(JE)) from Jeotgalicoccus species. In brief, this study provided an alternative method for isoprene biosynthesis, which is largely different from the well-developed MEP pathway or MVA pathway. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12896-016-0236-2) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4719670 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-47196702016-01-21 A novel MVA-mediated pathway for isoprene production in engineered E. coli Yang, Jianming Nie, Qingjuan Liu, Hui Xian, Mo Liu, Huizhou BMC Biotechnol Research Article BACKGROUND: To deal with the increasingly severe energy crisis and environmental consequences, biofuels and biochemicals generated from renewable resources could serve as a promising alternative for replacing petroleum as a source of fuel and chemicals, among which isoprene (2-methyl-1,3-butadiene) in particular is of great significance in that it is an important platform chemical, which has been used in industrial production of synthetic rubber for tires and coatings or aviation fuel. RESULTS: We firstly introduced fatty acid decarboxylase (OleT(JE)) from Jeotgalicoccus species into E. coli to directly convert MVA(mevalonate) into 3-methy-3-buten-1-ol. And then to transform 3-methy-3-buten-1-ol to isoprene, oleate hydratase (OhyA(EM)) from Elizabethkingia meningoseptica was overexpressed in E. coli. A novel biosynthetic pathway of isoprene in E. coli was established by co-expressing the heterologous mvaE gene encoding acetyl-CoA acetyltransferase/HMG-CoA reductase and mvaS gene encoding HMG-CoA synthase from Enterococcus faecalis, fatty acid decarboxylase (OleT(JE)) and oleate hydratase (OhyA(EM)). Furthermore, to enhance isoprene production, a further optimization of expression level of OleT(JE), OhyA(EM) was carried out by using different promoters and copy numbers of plasmids. Thereafter, the fermentation process was also optimized to improve the production of isoprene. The final engineered strain, YJM33, bearing the innovative biosynthetic pathway of isoprene, was found to produce isoprene up to 2.2 mg/L and 620 mg/L under flask and fed-batch fermentation conditions, respectively. CONCLUSIONS: In this study, by using metabolic engineering techniques, the novel MVA-mediated biosynthetic pathway of isoprene was successfully assembled in E. coli BL21(DE3) with the heterologous MVA upper pathway, OleT(JE) from Jeotgalicoccus species and OhyA(EM) from Elizabethkingia meningoseptica. Compared with traditional MVA pathway, the novel pathway is shortened by 3 steps. In addition, this is the first report on the reaction of converting MVA into 3-methy-3-buten-1-ol by fatty acid decarboxylase (OleT(JE)) from Jeotgalicoccus species. In brief, this study provided an alternative method for isoprene biosynthesis, which is largely different from the well-developed MEP pathway or MVA pathway. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12896-016-0236-2) contains supplementary material, which is available to authorized users. BioMed Central 2016-01-20 /pmc/articles/PMC4719670/ /pubmed/26786050 http://dx.doi.org/10.1186/s12896-016-0236-2 Text en © Yang et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Yang, Jianming Nie, Qingjuan Liu, Hui Xian, Mo Liu, Huizhou A novel MVA-mediated pathway for isoprene production in engineered E. coli |
title | A novel MVA-mediated pathway for isoprene production in engineered E. coli |
title_full | A novel MVA-mediated pathway for isoprene production in engineered E. coli |
title_fullStr | A novel MVA-mediated pathway for isoprene production in engineered E. coli |
title_full_unstemmed | A novel MVA-mediated pathway for isoprene production in engineered E. coli |
title_short | A novel MVA-mediated pathway for isoprene production in engineered E. coli |
title_sort | novel mva-mediated pathway for isoprene production in engineered e. coli |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4719670/ https://www.ncbi.nlm.nih.gov/pubmed/26786050 http://dx.doi.org/10.1186/s12896-016-0236-2 |
work_keys_str_mv | AT yangjianming anovelmvamediatedpathwayforisopreneproductioninengineeredecoli AT nieqingjuan anovelmvamediatedpathwayforisopreneproductioninengineeredecoli AT liuhui anovelmvamediatedpathwayforisopreneproductioninengineeredecoli AT xianmo anovelmvamediatedpathwayforisopreneproductioninengineeredecoli AT liuhuizhou anovelmvamediatedpathwayforisopreneproductioninengineeredecoli AT yangjianming novelmvamediatedpathwayforisopreneproductioninengineeredecoli AT nieqingjuan novelmvamediatedpathwayforisopreneproductioninengineeredecoli AT liuhui novelmvamediatedpathwayforisopreneproductioninengineeredecoli AT xianmo novelmvamediatedpathwayforisopreneproductioninengineeredecoli AT liuhuizhou novelmvamediatedpathwayforisopreneproductioninengineeredecoli |