Cargando…
High-Content Analysis of CRISPR-Cas9 Gene-Edited Human Embryonic Stem Cells
CRISPR-Cas9 gene editing of human cells and tissues holds much promise to advance medicine and biology, but standard editing methods require weeks to months of reagent preparation and selection where much or all of the initial edited samples are destroyed during analysis. ArrayEdit, a simple approac...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720027/ https://www.ncbi.nlm.nih.gov/pubmed/26771356 http://dx.doi.org/10.1016/j.stemcr.2015.11.014 |
_version_ | 1782411027049086976 |
---|---|
author | Carlson-Stevermer, Jared Goedland, Madelyn Steyer, Benjamin Movaghar, Arezoo Lou, Meng Kohlenberg, Lucille Prestil, Ryan Saha, Krishanu |
author_facet | Carlson-Stevermer, Jared Goedland, Madelyn Steyer, Benjamin Movaghar, Arezoo Lou, Meng Kohlenberg, Lucille Prestil, Ryan Saha, Krishanu |
author_sort | Carlson-Stevermer, Jared |
collection | PubMed |
description | CRISPR-Cas9 gene editing of human cells and tissues holds much promise to advance medicine and biology, but standard editing methods require weeks to months of reagent preparation and selection where much or all of the initial edited samples are destroyed during analysis. ArrayEdit, a simple approach utilizing surface-modified multiwell plates containing one-pot transcribed single-guide RNAs, separates thousands of edited cell populations for automated, live, high-content imaging and analysis. The approach lowers the time and cost of gene editing and produces edited human embryonic stem cells at high efficiencies. Edited genes can be expressed in both pluripotent stem cells and differentiated cells. This preclinical platform adds important capabilities to observe editing and selection in situ within complex structures generated by human cells, ultimately enabling optical and other molecular perturbations in the editing workflow that could refine the specificity and versatility of gene editing. |
format | Online Article Text |
id | pubmed-4720027 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-47200272016-02-22 High-Content Analysis of CRISPR-Cas9 Gene-Edited Human Embryonic Stem Cells Carlson-Stevermer, Jared Goedland, Madelyn Steyer, Benjamin Movaghar, Arezoo Lou, Meng Kohlenberg, Lucille Prestil, Ryan Saha, Krishanu Stem Cell Reports Article CRISPR-Cas9 gene editing of human cells and tissues holds much promise to advance medicine and biology, but standard editing methods require weeks to months of reagent preparation and selection where much or all of the initial edited samples are destroyed during analysis. ArrayEdit, a simple approach utilizing surface-modified multiwell plates containing one-pot transcribed single-guide RNAs, separates thousands of edited cell populations for automated, live, high-content imaging and analysis. The approach lowers the time and cost of gene editing and produces edited human embryonic stem cells at high efficiencies. Edited genes can be expressed in both pluripotent stem cells and differentiated cells. This preclinical platform adds important capabilities to observe editing and selection in situ within complex structures generated by human cells, ultimately enabling optical and other molecular perturbations in the editing workflow that could refine the specificity and versatility of gene editing. Elsevier 2016-01-12 /pmc/articles/PMC4720027/ /pubmed/26771356 http://dx.doi.org/10.1016/j.stemcr.2015.11.014 Text en © 2016 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Carlson-Stevermer, Jared Goedland, Madelyn Steyer, Benjamin Movaghar, Arezoo Lou, Meng Kohlenberg, Lucille Prestil, Ryan Saha, Krishanu High-Content Analysis of CRISPR-Cas9 Gene-Edited Human Embryonic Stem Cells |
title | High-Content Analysis of CRISPR-Cas9 Gene-Edited Human Embryonic Stem Cells |
title_full | High-Content Analysis of CRISPR-Cas9 Gene-Edited Human Embryonic Stem Cells |
title_fullStr | High-Content Analysis of CRISPR-Cas9 Gene-Edited Human Embryonic Stem Cells |
title_full_unstemmed | High-Content Analysis of CRISPR-Cas9 Gene-Edited Human Embryonic Stem Cells |
title_short | High-Content Analysis of CRISPR-Cas9 Gene-Edited Human Embryonic Stem Cells |
title_sort | high-content analysis of crispr-cas9 gene-edited human embryonic stem cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720027/ https://www.ncbi.nlm.nih.gov/pubmed/26771356 http://dx.doi.org/10.1016/j.stemcr.2015.11.014 |
work_keys_str_mv | AT carlsonstevermerjared highcontentanalysisofcrisprcas9geneeditedhumanembryonicstemcells AT goedlandmadelyn highcontentanalysisofcrisprcas9geneeditedhumanembryonicstemcells AT steyerbenjamin highcontentanalysisofcrisprcas9geneeditedhumanembryonicstemcells AT movaghararezoo highcontentanalysisofcrisprcas9geneeditedhumanembryonicstemcells AT loumeng highcontentanalysisofcrisprcas9geneeditedhumanembryonicstemcells AT kohlenberglucille highcontentanalysisofcrisprcas9geneeditedhumanembryonicstemcells AT prestilryan highcontentanalysisofcrisprcas9geneeditedhumanembryonicstemcells AT sahakrishanu highcontentanalysisofcrisprcas9geneeditedhumanembryonicstemcells |