Cargando…

Implicit Processing of the Eyes and Mouth: Evidence from Human Electrophysiology

The current study examined the time course of implicit processing of distinct facial features and the associate event-related potential (ERP) components. To this end, we used a masked priming paradigm to investigate implicit processing of the eyes and mouth in upright and inverted faces, using a pri...

Descripción completa

Detalles Bibliográficos
Autores principales: Pesciarelli, Francesca, Leo, Irene, Sarlo, Michela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720279/
https://www.ncbi.nlm.nih.gov/pubmed/26790153
http://dx.doi.org/10.1371/journal.pone.0147415
Descripción
Sumario:The current study examined the time course of implicit processing of distinct facial features and the associate event-related potential (ERP) components. To this end, we used a masked priming paradigm to investigate implicit processing of the eyes and mouth in upright and inverted faces, using a prime duration of 33 ms. Two types of prime-target pairs were used: 1. congruent (e.g., open eyes only in both prime and target or open mouth only in both prime and target); 2. incongruent (e.g., open mouth only in prime and open eyes only in target or open eyes only in prime and open mouth only in target). The identity of the faces changed between prime and target. Participants pressed a button when the target face had the eyes open and another button when the target face had the mouth open. The behavioral results showed faster RTs for the eyes in upright faces than the eyes in inverted faces, the mouth in upright and inverted faces. Moreover they also revealed a congruent priming effect for the mouth in upright faces. The ERP findings showed a face orientation effect across all ERP components studied (P1, N1, N170, P2, N2, P3) starting at about 80 ms, and a congruency/priming effect on late components (P2, N2, P3), starting at about 150 ms. Crucially, the results showed that the orientation effect was driven by the eye region (N170, P2) and that the congruency effect started earlier (P2) for the eyes than for the mouth (N2). These findings mark the time course of the processing of internal facial features and provide further evidence that the eyes are automatically processed and that they are very salient facial features that strongly affect the amplitude, latency, and distribution of neural responses to faces.