Cargando…
Choose Your Weaponry: Selective Storage of a Single Toxic Compound, Latrunculin A, by Closely Related Nudibranch Molluscs
Natural products play an invaluable role as a starting point in the drug discovery process, and plants and animals use many interesting biologically active natural products as a chemical defense mechanism against predators. Among marine organisms, many nudibranch gastropods are known to derive defen...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720420/ https://www.ncbi.nlm.nih.gov/pubmed/26788920 http://dx.doi.org/10.1371/journal.pone.0145134 |
_version_ | 1782411079611056128 |
---|---|
author | Cheney, Karen L. White, Andrew Mudianta, I. Wayan Winters, Anne E. Quezada, Michelle Capon, Robert J. Mollo, Ernesto Garson, Mary J. |
author_facet | Cheney, Karen L. White, Andrew Mudianta, I. Wayan Winters, Anne E. Quezada, Michelle Capon, Robert J. Mollo, Ernesto Garson, Mary J. |
author_sort | Cheney, Karen L. |
collection | PubMed |
description | Natural products play an invaluable role as a starting point in the drug discovery process, and plants and animals use many interesting biologically active natural products as a chemical defense mechanism against predators. Among marine organisms, many nudibranch gastropods are known to derive defensive metabolites from the sponges they eat. Here we investigated the putative sequestration of the toxic compound latrunculin A—a 16-membered macrolide that prevents actin polymerization within cellular processes—which has been identified from sponge sources, by five closely related nudibranch molluscs of the genus Chromodoris. Only latrunculin A was present in the rim of the mantle of these species, where storage reservoirs containing secondary metabolites are located, whilst a variety of secondary metabolites were found in their viscera. The species studied thus selectively accumulate latrunculin A in the part of the mantle that is more exposed to potential predators. This study also demonstrates that latrunculin-containing sponges are not their sole food source. Latrunculin A was found to be several times more potent than other compounds present in these species of nudibranchs when tested by in vitro and in vivo toxicity assays. Anti-feedant assays also indicated that latrunculin A was unpalatable to rock pool shrimps, in a dose-dependent manner. These findings led us to propose that this group of nudibranchs has evolved means both to protect themselves from the toxicity of latrunculin A, and to accumulate this compound in the mantle rim for defensive purposes. The precise mechanism by which the nudibranchs sequester such a potent compound from sponges without disrupting their own key physiological processes is unclear, but this work paves the way for future studies in this direction. Finally, the possible occurrence of both visual and chemosensory Müllerian mimicry in the studied species is discussed. |
format | Online Article Text |
id | pubmed-4720420 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-47204202016-01-30 Choose Your Weaponry: Selective Storage of a Single Toxic Compound, Latrunculin A, by Closely Related Nudibranch Molluscs Cheney, Karen L. White, Andrew Mudianta, I. Wayan Winters, Anne E. Quezada, Michelle Capon, Robert J. Mollo, Ernesto Garson, Mary J. PLoS One Research Article Natural products play an invaluable role as a starting point in the drug discovery process, and plants and animals use many interesting biologically active natural products as a chemical defense mechanism against predators. Among marine organisms, many nudibranch gastropods are known to derive defensive metabolites from the sponges they eat. Here we investigated the putative sequestration of the toxic compound latrunculin A—a 16-membered macrolide that prevents actin polymerization within cellular processes—which has been identified from sponge sources, by five closely related nudibranch molluscs of the genus Chromodoris. Only latrunculin A was present in the rim of the mantle of these species, where storage reservoirs containing secondary metabolites are located, whilst a variety of secondary metabolites were found in their viscera. The species studied thus selectively accumulate latrunculin A in the part of the mantle that is more exposed to potential predators. This study also demonstrates that latrunculin-containing sponges are not their sole food source. Latrunculin A was found to be several times more potent than other compounds present in these species of nudibranchs when tested by in vitro and in vivo toxicity assays. Anti-feedant assays also indicated that latrunculin A was unpalatable to rock pool shrimps, in a dose-dependent manner. These findings led us to propose that this group of nudibranchs has evolved means both to protect themselves from the toxicity of latrunculin A, and to accumulate this compound in the mantle rim for defensive purposes. The precise mechanism by which the nudibranchs sequester such a potent compound from sponges without disrupting their own key physiological processes is unclear, but this work paves the way for future studies in this direction. Finally, the possible occurrence of both visual and chemosensory Müllerian mimicry in the studied species is discussed. Public Library of Science 2016-01-20 /pmc/articles/PMC4720420/ /pubmed/26788920 http://dx.doi.org/10.1371/journal.pone.0145134 Text en © 2016 Cheney et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited |
spellingShingle | Research Article Cheney, Karen L. White, Andrew Mudianta, I. Wayan Winters, Anne E. Quezada, Michelle Capon, Robert J. Mollo, Ernesto Garson, Mary J. Choose Your Weaponry: Selective Storage of a Single Toxic Compound, Latrunculin A, by Closely Related Nudibranch Molluscs |
title | Choose Your Weaponry: Selective Storage of a Single Toxic Compound, Latrunculin A, by Closely Related Nudibranch Molluscs |
title_full | Choose Your Weaponry: Selective Storage of a Single Toxic Compound, Latrunculin A, by Closely Related Nudibranch Molluscs |
title_fullStr | Choose Your Weaponry: Selective Storage of a Single Toxic Compound, Latrunculin A, by Closely Related Nudibranch Molluscs |
title_full_unstemmed | Choose Your Weaponry: Selective Storage of a Single Toxic Compound, Latrunculin A, by Closely Related Nudibranch Molluscs |
title_short | Choose Your Weaponry: Selective Storage of a Single Toxic Compound, Latrunculin A, by Closely Related Nudibranch Molluscs |
title_sort | choose your weaponry: selective storage of a single toxic compound, latrunculin a, by closely related nudibranch molluscs |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720420/ https://www.ncbi.nlm.nih.gov/pubmed/26788920 http://dx.doi.org/10.1371/journal.pone.0145134 |
work_keys_str_mv | AT cheneykarenl chooseyourweaponryselectivestorageofasingletoxiccompoundlatrunculinabycloselyrelatednudibranchmolluscs AT whiteandrew chooseyourweaponryselectivestorageofasingletoxiccompoundlatrunculinabycloselyrelatednudibranchmolluscs AT mudiantaiwayan chooseyourweaponryselectivestorageofasingletoxiccompoundlatrunculinabycloselyrelatednudibranchmolluscs AT wintersannee chooseyourweaponryselectivestorageofasingletoxiccompoundlatrunculinabycloselyrelatednudibranchmolluscs AT quezadamichelle chooseyourweaponryselectivestorageofasingletoxiccompoundlatrunculinabycloselyrelatednudibranchmolluscs AT caponrobertj chooseyourweaponryselectivestorageofasingletoxiccompoundlatrunculinabycloselyrelatednudibranchmolluscs AT molloernesto chooseyourweaponryselectivestorageofasingletoxiccompoundlatrunculinabycloselyrelatednudibranchmolluscs AT garsonmaryj chooseyourweaponryselectivestorageofasingletoxiccompoundlatrunculinabycloselyrelatednudibranchmolluscs |