Cargando…

Exchange transfusion for neonate with haemolytic uremic syndrome

INTRODUCTION: Haemolytic uremic syndrome (HUS) is one of the most common causes of acute renal failure in children but it is uncommon in newborns. To our knowledge only five cases have been reported so far (probably underreported). The known modalities of treatment include transfusion of plasma and...

Descripción completa

Detalles Bibliográficos
Autores principales: Saikia, Bedangshu, Vashisht, Neetu, Gupta, Neeraj, Sharma, Archna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720624/
https://www.ncbi.nlm.nih.gov/pubmed/26835232
http://dx.doi.org/10.1186/s40064-016-1667-x
Descripción
Sumario:INTRODUCTION: Haemolytic uremic syndrome (HUS) is one of the most common causes of acute renal failure in children but it is uncommon in newborns. To our knowledge only five cases have been reported so far (probably underreported). The known modalities of treatment include transfusion of plasma and plasmapheresis. We report a case of neonatal HUS for whom we performed an exchange transfusion to good effect. CASE DESCRIPTION: A term vaginally born baby, meconium stained and floppy at birth presented with severe anaemia in the first few hours of life. The baby later on developed renal failure and blood picture was suggestive of severe thrombocytopenia and microangiopathic haemolytic anaemia. No extra renal manifestations of birth asphyxia were noted. A double volume exchange transfusion was performed relatively early and subsequently platelet and haemoglobin stabilised and renal failure improved. DISCUSSION AND EVALUATION: The clinical impression in this case was convincing of neonatal HUS, likely attributable to birth asphyxia but needs to be differentiated from disseminated intravascular coagulation (DIC) and thrombotic thrombocytopenic purpura (TTP). The coagulation profile is usually normal in HUS but it is abnormal in DIC, whereas in TTP one would find hyperbilirubinemia, increased creatinine, haemolysis etc. TTP is rare but not very uncommon in infancy. Congenital TTP is attributed to an inherent deficiency of ADAMTS-13, which is a vWF-cleaving metalloprotease. Irrespective of the etiology of HUS in our case, a dramatic response was observed with exchange transfusion. Transfusion of fresh frozen plasma (FFP) and plasmapheresis are known treatment modalities. FFP replaces the missing or altered complement factors and plasmapheresis removes antibodies, immune complexes and toxins. An exchange transfusion combines both these functions. CONCLUSIONS: In the absence of facilities for plasmapheresis, exchange transfusion is a good alternative.