Cargando…
Towards smart energy systems: application of kernel machine regression for medium term electricity load forecasting
Integration of energy systems with information technologies has facilitated the realization of smart energy systems that utilize information to optimize system operation. To that end, crucial in optimizing energy system operation is the accurate, ahead-of-time forecasting of load demand. In particul...
Autores principales: | Alamaniotis, Miltiadis, Bargiotas, Dimitrios, Tsoukalas, Lefteri H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720629/ https://www.ncbi.nlm.nih.gov/pubmed/26835237 http://dx.doi.org/10.1186/s40064-016-1665-z |
Ejemplares similares
-
Fuzzy Leaky Bucket System for Intelligent Management of Consumer Electricity Elastic Load in Smart Grids
por: Alamaniotis, Miltiadis
Publicado: (2020) -
Deterioration of Electrical Load Forecasting Models in a Smart Grid Environment
por: Azeem, Abdul, et al.
Publicado: (2022) -
Electricity Load Forecasting Using Support Vector Regression with Memetic Algorithms
por: Hu, Zhongyi, et al.
Publicado: (2013) -
Towards Modified Entropy Mutual Information Feature Selection to Forecast Medium-Term Load Using a Deep Learning Model in Smart Homes
por: Samuel, Omaji, et al.
Publicado: (2020) -
The Association of Combined Per- and Polyfluoroalkyl Substances and Metals with Allostatic Load Using Bayesian Kernel Machine Regression
por: Bashir, Tahir, et al.
Publicado: (2023)