Cargando…
Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain
BACKGROUND: Imidazolium ionic liquids (IILs) underpin promising technologies that generate fermentable sugars from lignocellulose for future biorefineries. However, residual IILs are toxic to fermentative microbes such as Saccharomyces cerevisiae, making IIL-tolerance a key property for strain engin...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721058/ https://www.ncbi.nlm.nih.gov/pubmed/26790958 http://dx.doi.org/10.1186/s12934-016-0417-7 |
_version_ | 1782411170776350720 |
---|---|
author | Dickinson, Quinn Bottoms, Scott Hinchman, Li McIlwain, Sean Li, Sheena Myers, Chad L. Boone, Charles Coon, Joshua J. Hebert, Alexander Sato, Trey K. Landick, Robert Piotrowski, Jeff S. |
author_facet | Dickinson, Quinn Bottoms, Scott Hinchman, Li McIlwain, Sean Li, Sheena Myers, Chad L. Boone, Charles Coon, Joshua J. Hebert, Alexander Sato, Trey K. Landick, Robert Piotrowski, Jeff S. |
author_sort | Dickinson, Quinn |
collection | PubMed |
description | BACKGROUND: Imidazolium ionic liquids (IILs) underpin promising technologies that generate fermentable sugars from lignocellulose for future biorefineries. However, residual IILs are toxic to fermentative microbes such as Saccharomyces cerevisiae, making IIL-tolerance a key property for strain engineering. To enable rational engineering, we used chemical genomic profiling to understand the effects of IILs on S. cerevisiae. RESULTS: We found that IILs likely target mitochondria as their chemical genomic profiles closely resembled that of the mitochondrial membrane disrupting agent valinomycin. Further, several deletions of genes encoding mitochondrial proteins exhibited increased sensitivity to IIL. High-throughput chemical proteomics confirmed effects of IILs on mitochondrial protein levels. IILs induced abnormal mitochondrial morphology, as well as altered polarization of mitochondrial membrane potential similar to valinomycin. Deletion of the putative serine/threonine kinase PTK2 thought to activate the plasma-membrane proton efflux pump Pma1p conferred a significant IIL-fitness advantage. Conversely, overexpression of PMA1 conferred sensitivity to IILs, suggesting that hydrogen ion efflux may be coupled to influx of the toxic imidazolium cation. PTK2 deletion conferred resistance to multiple IILs, including [EMIM]Cl, [BMIM]Cl, and [EMIM]Ac. An engineered, xylose-converting ptk2∆ S. cerevisiae (Y133-IIL) strain consumed glucose and xylose faster and produced more ethanol in the presence of 1 % [BMIM]Cl than the wild-type PTK2 strain. We propose a model of IIL toxicity and resistance. CONCLUSIONS: This work demonstrates the utility of chemical genomics-guided biodesign for development of superior microbial biocatalysts for the ever-changing landscape of fermentation inhibitors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12934-016-0417-7) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4721058 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-47210582016-01-22 Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain Dickinson, Quinn Bottoms, Scott Hinchman, Li McIlwain, Sean Li, Sheena Myers, Chad L. Boone, Charles Coon, Joshua J. Hebert, Alexander Sato, Trey K. Landick, Robert Piotrowski, Jeff S. Microb Cell Fact Research BACKGROUND: Imidazolium ionic liquids (IILs) underpin promising technologies that generate fermentable sugars from lignocellulose for future biorefineries. However, residual IILs are toxic to fermentative microbes such as Saccharomyces cerevisiae, making IIL-tolerance a key property for strain engineering. To enable rational engineering, we used chemical genomic profiling to understand the effects of IILs on S. cerevisiae. RESULTS: We found that IILs likely target mitochondria as their chemical genomic profiles closely resembled that of the mitochondrial membrane disrupting agent valinomycin. Further, several deletions of genes encoding mitochondrial proteins exhibited increased sensitivity to IIL. High-throughput chemical proteomics confirmed effects of IILs on mitochondrial protein levels. IILs induced abnormal mitochondrial morphology, as well as altered polarization of mitochondrial membrane potential similar to valinomycin. Deletion of the putative serine/threonine kinase PTK2 thought to activate the plasma-membrane proton efflux pump Pma1p conferred a significant IIL-fitness advantage. Conversely, overexpression of PMA1 conferred sensitivity to IILs, suggesting that hydrogen ion efflux may be coupled to influx of the toxic imidazolium cation. PTK2 deletion conferred resistance to multiple IILs, including [EMIM]Cl, [BMIM]Cl, and [EMIM]Ac. An engineered, xylose-converting ptk2∆ S. cerevisiae (Y133-IIL) strain consumed glucose and xylose faster and produced more ethanol in the presence of 1 % [BMIM]Cl than the wild-type PTK2 strain. We propose a model of IIL toxicity and resistance. CONCLUSIONS: This work demonstrates the utility of chemical genomics-guided biodesign for development of superior microbial biocatalysts for the ever-changing landscape of fermentation inhibitors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12934-016-0417-7) contains supplementary material, which is available to authorized users. BioMed Central 2016-01-20 /pmc/articles/PMC4721058/ /pubmed/26790958 http://dx.doi.org/10.1186/s12934-016-0417-7 Text en © Dickinson et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Dickinson, Quinn Bottoms, Scott Hinchman, Li McIlwain, Sean Li, Sheena Myers, Chad L. Boone, Charles Coon, Joshua J. Hebert, Alexander Sato, Trey K. Landick, Robert Piotrowski, Jeff S. Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain |
title | Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain |
title_full | Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain |
title_fullStr | Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain |
title_full_unstemmed | Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain |
title_short | Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain |
title_sort | mechanism of imidazolium ionic liquids toxicity in saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721058/ https://www.ncbi.nlm.nih.gov/pubmed/26790958 http://dx.doi.org/10.1186/s12934-016-0417-7 |
work_keys_str_mv | AT dickinsonquinn mechanismofimidazoliumionicliquidstoxicityinsaccharomycescerevisiaeandrationalengineeringofatolerantxylosefermentingstrain AT bottomsscott mechanismofimidazoliumionicliquidstoxicityinsaccharomycescerevisiaeandrationalengineeringofatolerantxylosefermentingstrain AT hinchmanli mechanismofimidazoliumionicliquidstoxicityinsaccharomycescerevisiaeandrationalengineeringofatolerantxylosefermentingstrain AT mcilwainsean mechanismofimidazoliumionicliquidstoxicityinsaccharomycescerevisiaeandrationalengineeringofatolerantxylosefermentingstrain AT lisheena mechanismofimidazoliumionicliquidstoxicityinsaccharomycescerevisiaeandrationalengineeringofatolerantxylosefermentingstrain AT myerschadl mechanismofimidazoliumionicliquidstoxicityinsaccharomycescerevisiaeandrationalengineeringofatolerantxylosefermentingstrain AT boonecharles mechanismofimidazoliumionicliquidstoxicityinsaccharomycescerevisiaeandrationalengineeringofatolerantxylosefermentingstrain AT coonjoshuaj mechanismofimidazoliumionicliquidstoxicityinsaccharomycescerevisiaeandrationalengineeringofatolerantxylosefermentingstrain AT hebertalexander mechanismofimidazoliumionicliquidstoxicityinsaccharomycescerevisiaeandrationalengineeringofatolerantxylosefermentingstrain AT satotreyk mechanismofimidazoliumionicliquidstoxicityinsaccharomycescerevisiaeandrationalengineeringofatolerantxylosefermentingstrain AT landickrobert mechanismofimidazoliumionicliquidstoxicityinsaccharomycescerevisiaeandrationalengineeringofatolerantxylosefermentingstrain AT piotrowskijeffs mechanismofimidazoliumionicliquidstoxicityinsaccharomycescerevisiaeandrationalengineeringofatolerantxylosefermentingstrain |