Cargando…

Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain

BACKGROUND: Imidazolium ionic liquids (IILs) underpin promising technologies that generate fermentable sugars from lignocellulose for future biorefineries. However, residual IILs are toxic to fermentative microbes such as Saccharomyces cerevisiae, making IIL-tolerance a key property for strain engin...

Descripción completa

Detalles Bibliográficos
Autores principales: Dickinson, Quinn, Bottoms, Scott, Hinchman, Li, McIlwain, Sean, Li, Sheena, Myers, Chad L., Boone, Charles, Coon, Joshua J., Hebert, Alexander, Sato, Trey K., Landick, Robert, Piotrowski, Jeff S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721058/
https://www.ncbi.nlm.nih.gov/pubmed/26790958
http://dx.doi.org/10.1186/s12934-016-0417-7
_version_ 1782411170776350720
author Dickinson, Quinn
Bottoms, Scott
Hinchman, Li
McIlwain, Sean
Li, Sheena
Myers, Chad L.
Boone, Charles
Coon, Joshua J.
Hebert, Alexander
Sato, Trey K.
Landick, Robert
Piotrowski, Jeff S.
author_facet Dickinson, Quinn
Bottoms, Scott
Hinchman, Li
McIlwain, Sean
Li, Sheena
Myers, Chad L.
Boone, Charles
Coon, Joshua J.
Hebert, Alexander
Sato, Trey K.
Landick, Robert
Piotrowski, Jeff S.
author_sort Dickinson, Quinn
collection PubMed
description BACKGROUND: Imidazolium ionic liquids (IILs) underpin promising technologies that generate fermentable sugars from lignocellulose for future biorefineries. However, residual IILs are toxic to fermentative microbes such as Saccharomyces cerevisiae, making IIL-tolerance a key property for strain engineering. To enable rational engineering, we used chemical genomic profiling to understand the effects of IILs on S. cerevisiae. RESULTS: We found that IILs likely target mitochondria as their chemical genomic profiles closely resembled that of the mitochondrial membrane disrupting agent valinomycin. Further, several deletions of genes encoding mitochondrial proteins exhibited increased sensitivity to IIL. High-throughput chemical proteomics confirmed effects of IILs on mitochondrial protein levels. IILs induced abnormal mitochondrial morphology, as well as altered polarization of mitochondrial membrane potential similar to valinomycin. Deletion of the putative serine/threonine kinase PTK2 thought to activate the plasma-membrane proton efflux pump Pma1p conferred a significant IIL-fitness advantage. Conversely, overexpression of PMA1 conferred sensitivity to IILs, suggesting that hydrogen ion efflux may be coupled to influx of the toxic imidazolium cation. PTK2 deletion conferred resistance to multiple IILs, including [EMIM]Cl, [BMIM]Cl, and [EMIM]Ac. An engineered, xylose-converting ptk2∆ S. cerevisiae (Y133-IIL) strain consumed glucose and xylose faster and produced more ethanol in the presence of 1 % [BMIM]Cl than the wild-type PTK2 strain. We propose a model of IIL toxicity and resistance. CONCLUSIONS: This work demonstrates the utility of chemical genomics-guided biodesign for development of superior microbial biocatalysts for the ever-changing landscape of fermentation inhibitors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12934-016-0417-7) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4721058
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-47210582016-01-22 Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain Dickinson, Quinn Bottoms, Scott Hinchman, Li McIlwain, Sean Li, Sheena Myers, Chad L. Boone, Charles Coon, Joshua J. Hebert, Alexander Sato, Trey K. Landick, Robert Piotrowski, Jeff S. Microb Cell Fact Research BACKGROUND: Imidazolium ionic liquids (IILs) underpin promising technologies that generate fermentable sugars from lignocellulose for future biorefineries. However, residual IILs are toxic to fermentative microbes such as Saccharomyces cerevisiae, making IIL-tolerance a key property for strain engineering. To enable rational engineering, we used chemical genomic profiling to understand the effects of IILs on S. cerevisiae. RESULTS: We found that IILs likely target mitochondria as their chemical genomic profiles closely resembled that of the mitochondrial membrane disrupting agent valinomycin. Further, several deletions of genes encoding mitochondrial proteins exhibited increased sensitivity to IIL. High-throughput chemical proteomics confirmed effects of IILs on mitochondrial protein levels. IILs induced abnormal mitochondrial morphology, as well as altered polarization of mitochondrial membrane potential similar to valinomycin. Deletion of the putative serine/threonine kinase PTK2 thought to activate the plasma-membrane proton efflux pump Pma1p conferred a significant IIL-fitness advantage. Conversely, overexpression of PMA1 conferred sensitivity to IILs, suggesting that hydrogen ion efflux may be coupled to influx of the toxic imidazolium cation. PTK2 deletion conferred resistance to multiple IILs, including [EMIM]Cl, [BMIM]Cl, and [EMIM]Ac. An engineered, xylose-converting ptk2∆ S. cerevisiae (Y133-IIL) strain consumed glucose and xylose faster and produced more ethanol in the presence of 1 % [BMIM]Cl than the wild-type PTK2 strain. We propose a model of IIL toxicity and resistance. CONCLUSIONS: This work demonstrates the utility of chemical genomics-guided biodesign for development of superior microbial biocatalysts for the ever-changing landscape of fermentation inhibitors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12934-016-0417-7) contains supplementary material, which is available to authorized users. BioMed Central 2016-01-20 /pmc/articles/PMC4721058/ /pubmed/26790958 http://dx.doi.org/10.1186/s12934-016-0417-7 Text en © Dickinson et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Dickinson, Quinn
Bottoms, Scott
Hinchman, Li
McIlwain, Sean
Li, Sheena
Myers, Chad L.
Boone, Charles
Coon, Joshua J.
Hebert, Alexander
Sato, Trey K.
Landick, Robert
Piotrowski, Jeff S.
Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain
title Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain
title_full Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain
title_fullStr Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain
title_full_unstemmed Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain
title_short Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain
title_sort mechanism of imidazolium ionic liquids toxicity in saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721058/
https://www.ncbi.nlm.nih.gov/pubmed/26790958
http://dx.doi.org/10.1186/s12934-016-0417-7
work_keys_str_mv AT dickinsonquinn mechanismofimidazoliumionicliquidstoxicityinsaccharomycescerevisiaeandrationalengineeringofatolerantxylosefermentingstrain
AT bottomsscott mechanismofimidazoliumionicliquidstoxicityinsaccharomycescerevisiaeandrationalengineeringofatolerantxylosefermentingstrain
AT hinchmanli mechanismofimidazoliumionicliquidstoxicityinsaccharomycescerevisiaeandrationalengineeringofatolerantxylosefermentingstrain
AT mcilwainsean mechanismofimidazoliumionicliquidstoxicityinsaccharomycescerevisiaeandrationalengineeringofatolerantxylosefermentingstrain
AT lisheena mechanismofimidazoliumionicliquidstoxicityinsaccharomycescerevisiaeandrationalengineeringofatolerantxylosefermentingstrain
AT myerschadl mechanismofimidazoliumionicliquidstoxicityinsaccharomycescerevisiaeandrationalengineeringofatolerantxylosefermentingstrain
AT boonecharles mechanismofimidazoliumionicliquidstoxicityinsaccharomycescerevisiaeandrationalengineeringofatolerantxylosefermentingstrain
AT coonjoshuaj mechanismofimidazoliumionicliquidstoxicityinsaccharomycescerevisiaeandrationalengineeringofatolerantxylosefermentingstrain
AT hebertalexander mechanismofimidazoliumionicliquidstoxicityinsaccharomycescerevisiaeandrationalengineeringofatolerantxylosefermentingstrain
AT satotreyk mechanismofimidazoliumionicliquidstoxicityinsaccharomycescerevisiaeandrationalengineeringofatolerantxylosefermentingstrain
AT landickrobert mechanismofimidazoliumionicliquidstoxicityinsaccharomycescerevisiaeandrationalengineeringofatolerantxylosefermentingstrain
AT piotrowskijeffs mechanismofimidazoliumionicliquidstoxicityinsaccharomycescerevisiaeandrationalengineeringofatolerantxylosefermentingstrain