Cargando…
Effect of (18)F-FDG Uptake Time on Lesion Detectability in PET Imaging of Early-Stage Breast Cancer
Prior reports have suggested that delayed (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) oncology imaging can improve the contrast-to-noise ratio (CNR) for known lesions. Our goal was to estimate realistic bounds for lesion detectability for static measurements within 1 to 4 hours b...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Grapho Publications, LLC
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721230/ https://www.ncbi.nlm.nih.gov/pubmed/26807443 http://dx.doi.org/10.18383/j.tom.2015.00151 |
_version_ | 1782411200460488704 |
---|---|
author | Wangerin, Kristen A. Muzi, Mark Peterson, Lanell M. Linden, Hannah M. Novakova, Alena O'Sullivan, Finbarr Kurland, Brenda F. Mankoff, David A. Kinahan, Paul E. |
author_facet | Wangerin, Kristen A. Muzi, Mark Peterson, Lanell M. Linden, Hannah M. Novakova, Alena O'Sullivan, Finbarr Kurland, Brenda F. Mankoff, David A. Kinahan, Paul E. |
author_sort | Wangerin, Kristen A. |
collection | PubMed |
description | Prior reports have suggested that delayed (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) oncology imaging can improve the contrast-to-noise ratio (CNR) for known lesions. Our goal was to estimate realistic bounds for lesion detectability for static measurements within 1 to 4 hours between FDG injection and image acquisition. Tumor and normal tissue kinetic model parameters were estimated from dynamic PET studies of patients with early-stage breast cancer. These parameters were used to generate time-activity curves (TACs) for up to 4 hours, for which we assumed both nonreversible and reversible models with different rates of FDG dephosphorylation (k(4)). For each pair of tumor and normal tissue TACs, 600 PET sinogram realizations were generated, and images were reconstructed using the ordered subsets expectation maximization reconstruction algorithm. Test statistics for each tumor and normal tissue region of interest were output from the computer model observers and evaluated using a receiver operating characteristic analysis, with the calculated area under the curve (AUC) providing a measure of lesion detectability. For the nonreversible model (k(4) = 0), the AUC increased in 11 of 23 (48%) patients for 1 to 2 hours after the current standard postradiotracer injection imaging window of 1 hour. This improvement was driven by increased tumor/normal tissue contrast before the impact of increased noise that resulted from radiotracer decay began to dominate the imaging signal. As k(4) was increased from 0 to 0.01 min(−1), the time of maximum detectability shifted earlier, due to decreasing FDG concentration in the tumor lowering the CNR. These results imply that delayed PET imaging may reveal inconspicuous lesions that otherwise would have gone undetected. |
format | Online Article Text |
id | pubmed-4721230 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Grapho Publications, LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-47212302016-01-21 Effect of (18)F-FDG Uptake Time on Lesion Detectability in PET Imaging of Early-Stage Breast Cancer Wangerin, Kristen A. Muzi, Mark Peterson, Lanell M. Linden, Hannah M. Novakova, Alena O'Sullivan, Finbarr Kurland, Brenda F. Mankoff, David A. Kinahan, Paul E. Tomography Research Article Prior reports have suggested that delayed (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) oncology imaging can improve the contrast-to-noise ratio (CNR) for known lesions. Our goal was to estimate realistic bounds for lesion detectability for static measurements within 1 to 4 hours between FDG injection and image acquisition. Tumor and normal tissue kinetic model parameters were estimated from dynamic PET studies of patients with early-stage breast cancer. These parameters were used to generate time-activity curves (TACs) for up to 4 hours, for which we assumed both nonreversible and reversible models with different rates of FDG dephosphorylation (k(4)). For each pair of tumor and normal tissue TACs, 600 PET sinogram realizations were generated, and images were reconstructed using the ordered subsets expectation maximization reconstruction algorithm. Test statistics for each tumor and normal tissue region of interest were output from the computer model observers and evaluated using a receiver operating characteristic analysis, with the calculated area under the curve (AUC) providing a measure of lesion detectability. For the nonreversible model (k(4) = 0), the AUC increased in 11 of 23 (48%) patients for 1 to 2 hours after the current standard postradiotracer injection imaging window of 1 hour. This improvement was driven by increased tumor/normal tissue contrast before the impact of increased noise that resulted from radiotracer decay began to dominate the imaging signal. As k(4) was increased from 0 to 0.01 min(−1), the time of maximum detectability shifted earlier, due to decreasing FDG concentration in the tumor lowering the CNR. These results imply that delayed PET imaging may reveal inconspicuous lesions that otherwise would have gone undetected. Grapho Publications, LLC 2015-09 /pmc/articles/PMC4721230/ /pubmed/26807443 http://dx.doi.org/10.18383/j.tom.2015.00151 Text en © 2015 The Authors. Published by Grapho Publications, LLC http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Article Wangerin, Kristen A. Muzi, Mark Peterson, Lanell M. Linden, Hannah M. Novakova, Alena O'Sullivan, Finbarr Kurland, Brenda F. Mankoff, David A. Kinahan, Paul E. Effect of (18)F-FDG Uptake Time on Lesion Detectability in PET Imaging of Early-Stage Breast Cancer |
title | Effect of (18)F-FDG Uptake Time on Lesion Detectability in PET Imaging of Early-Stage Breast Cancer |
title_full | Effect of (18)F-FDG Uptake Time on Lesion Detectability in PET Imaging of Early-Stage Breast Cancer |
title_fullStr | Effect of (18)F-FDG Uptake Time on Lesion Detectability in PET Imaging of Early-Stage Breast Cancer |
title_full_unstemmed | Effect of (18)F-FDG Uptake Time on Lesion Detectability in PET Imaging of Early-Stage Breast Cancer |
title_short | Effect of (18)F-FDG Uptake Time on Lesion Detectability in PET Imaging of Early-Stage Breast Cancer |
title_sort | effect of (18)f-fdg uptake time on lesion detectability in pet imaging of early-stage breast cancer |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721230/ https://www.ncbi.nlm.nih.gov/pubmed/26807443 http://dx.doi.org/10.18383/j.tom.2015.00151 |
work_keys_str_mv | AT wangerinkristena effectof18ffdguptaketimeonlesiondetectabilityinpetimagingofearlystagebreastcancer AT muzimark effectof18ffdguptaketimeonlesiondetectabilityinpetimagingofearlystagebreastcancer AT petersonlanellm effectof18ffdguptaketimeonlesiondetectabilityinpetimagingofearlystagebreastcancer AT lindenhannahm effectof18ffdguptaketimeonlesiondetectabilityinpetimagingofearlystagebreastcancer AT novakovaalena effectof18ffdguptaketimeonlesiondetectabilityinpetimagingofearlystagebreastcancer AT osullivanfinbarr effectof18ffdguptaketimeonlesiondetectabilityinpetimagingofearlystagebreastcancer AT kurlandbrendaf effectof18ffdguptaketimeonlesiondetectabilityinpetimagingofearlystagebreastcancer AT mankoffdavida effectof18ffdguptaketimeonlesiondetectabilityinpetimagingofearlystagebreastcancer AT kinahanpaule effectof18ffdguptaketimeonlesiondetectabilityinpetimagingofearlystagebreastcancer |