Cargando…
Evolutionary Character of Alternative Splicing in Plants
Alternative splicing (AS) is one of the most important ways to enhance the functional diversity of genes. Huge amounts of data have been produced by microarray, expressed sequence tag, and RNA-seq, and plenty of methods have been developed specifically for this task. The most frequently asked questi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721685/ https://www.ncbi.nlm.nih.gov/pubmed/26819552 http://dx.doi.org/10.4137/BBI.S33716 |
Sumario: | Alternative splicing (AS) is one of the most important ways to enhance the functional diversity of genes. Huge amounts of data have been produced by microarray, expressed sequence tag, and RNA-seq, and plenty of methods have been developed specifically for this task. The most frequently asked questions in previous research were as follows. What is the content rate of AS genes among the whole gene set? How many AS types are presented in the genome, and which type is dominant? How about the conservation ability of AS among different species? Which kinds of isoforms from some genes have the environmental response to help individual adaptation? Based on this background, we collected analysis results from 17 species to try to map out the landscape of AS studies in plants. We have noted the shortages of previous results, and we appeal to all scientists working in the AS field to make a standard protocol so that analyses between different projects are comparable. |
---|