Cargando…

GSA-Tuning IPD Control of a Field-Sensed Magnetic Suspension System

The purpose of this paper is to propose a GSA-tuning IPD control technique for magnetic suspension systems. An educational demonstration on a magnetic-field sensed magnetic suspension system is examined for effectiveness. For the magnetic-field sensed magnetic suspension system (FSMSS), the current...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Jen-Hsing, Chiou, Juing-Shian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721799/
https://www.ncbi.nlm.nih.gov/pubmed/26694404
http://dx.doi.org/10.3390/s151229879
Descripción
Sumario:The purpose of this paper is to propose a GSA-tuning IPD control technique for magnetic suspension systems. An educational demonstration on a magnetic-field sensed magnetic suspension system is examined for effectiveness. For the magnetic-field sensed magnetic suspension system (FSMSS), the current transducer is employed for measuring the electromagnetic coil current, and a Hall effect device is used for detecting the position of the suspended object. To achieve optimal performance, the gravitational search algorithm (GSA) is adopted for tuning the integral-proportional-derivative (IPD) controller. The IPD control includes the specified PD controller and an integrator. The specified PD control is employed for stabilizing the inherently unstable FSMSS, whereas the integral control is utilized for eliminating the steady-state error. The GSA can tune the IPD control parameters to enable optimal FSMSS performance. We achieved excellent results from the simulations and hands-on experiments for the proposed control strategies and structures.