Cargando…

A Multi-Atlas Labeling Approach for Identifying Subject-Specific Functional Regions of Interest

The functional region of interest (fROI) approach has increasingly become a favored methodology in functional magnetic resonance imaging (fMRI) because it can circumvent inter-subject anatomical and functional variability, and thus increase the sensitivity and functional resolution of fMRI analyses....

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Lijie, Zhou, Guangfu, Liu, Zhaoguo, Dang, Xiaobin, Yang, Zetian, Kong, Xiang-Zhen, Wang, Xu, Song, Yiying, Zhen, Zonglei, Liu, Jia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721956/
https://www.ncbi.nlm.nih.gov/pubmed/26796546
http://dx.doi.org/10.1371/journal.pone.0146868
_version_ 1782411302697697280
author Huang, Lijie
Zhou, Guangfu
Liu, Zhaoguo
Dang, Xiaobin
Yang, Zetian
Kong, Xiang-Zhen
Wang, Xu
Song, Yiying
Zhen, Zonglei
Liu, Jia
author_facet Huang, Lijie
Zhou, Guangfu
Liu, Zhaoguo
Dang, Xiaobin
Yang, Zetian
Kong, Xiang-Zhen
Wang, Xu
Song, Yiying
Zhen, Zonglei
Liu, Jia
author_sort Huang, Lijie
collection PubMed
description The functional region of interest (fROI) approach has increasingly become a favored methodology in functional magnetic resonance imaging (fMRI) because it can circumvent inter-subject anatomical and functional variability, and thus increase the sensitivity and functional resolution of fMRI analyses. The standard fROI method requires human experts to meticulously examine and identify subject-specific fROIs within activation clusters. This process is time-consuming and heavily dependent on experts’ knowledge. Several algorithmic approaches have been proposed for identifying subject-specific fROIs; however, these approaches cannot easily incorporate prior knowledge of inter-subject variability. In the present study, we improved the multi-atlas labeling approach for defining subject-specific fROIs. In particular, we used a classifier-based atlas-encoding scheme and an atlas selection procedure to account for the large spatial variability across subjects. Using a functional atlas database for face recognition, we showed that with these two features, our approach efficiently circumvented inter-subject anatomical and functional variability and thus improved labeling accuracy. Moreover, in comparison with a single-atlas approach, our multi-atlas labeling approach showed better performance in identifying subject-specific fROIs.
format Online
Article
Text
id pubmed-4721956
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-47219562016-01-30 A Multi-Atlas Labeling Approach for Identifying Subject-Specific Functional Regions of Interest Huang, Lijie Zhou, Guangfu Liu, Zhaoguo Dang, Xiaobin Yang, Zetian Kong, Xiang-Zhen Wang, Xu Song, Yiying Zhen, Zonglei Liu, Jia PLoS One Research Article The functional region of interest (fROI) approach has increasingly become a favored methodology in functional magnetic resonance imaging (fMRI) because it can circumvent inter-subject anatomical and functional variability, and thus increase the sensitivity and functional resolution of fMRI analyses. The standard fROI method requires human experts to meticulously examine and identify subject-specific fROIs within activation clusters. This process is time-consuming and heavily dependent on experts’ knowledge. Several algorithmic approaches have been proposed for identifying subject-specific fROIs; however, these approaches cannot easily incorporate prior knowledge of inter-subject variability. In the present study, we improved the multi-atlas labeling approach for defining subject-specific fROIs. In particular, we used a classifier-based atlas-encoding scheme and an atlas selection procedure to account for the large spatial variability across subjects. Using a functional atlas database for face recognition, we showed that with these two features, our approach efficiently circumvented inter-subject anatomical and functional variability and thus improved labeling accuracy. Moreover, in comparison with a single-atlas approach, our multi-atlas labeling approach showed better performance in identifying subject-specific fROIs. Public Library of Science 2016-01-21 /pmc/articles/PMC4721956/ /pubmed/26796546 http://dx.doi.org/10.1371/journal.pone.0146868 Text en © 2016 Huang et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Huang, Lijie
Zhou, Guangfu
Liu, Zhaoguo
Dang, Xiaobin
Yang, Zetian
Kong, Xiang-Zhen
Wang, Xu
Song, Yiying
Zhen, Zonglei
Liu, Jia
A Multi-Atlas Labeling Approach for Identifying Subject-Specific Functional Regions of Interest
title A Multi-Atlas Labeling Approach for Identifying Subject-Specific Functional Regions of Interest
title_full A Multi-Atlas Labeling Approach for Identifying Subject-Specific Functional Regions of Interest
title_fullStr A Multi-Atlas Labeling Approach for Identifying Subject-Specific Functional Regions of Interest
title_full_unstemmed A Multi-Atlas Labeling Approach for Identifying Subject-Specific Functional Regions of Interest
title_short A Multi-Atlas Labeling Approach for Identifying Subject-Specific Functional Regions of Interest
title_sort multi-atlas labeling approach for identifying subject-specific functional regions of interest
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721956/
https://www.ncbi.nlm.nih.gov/pubmed/26796546
http://dx.doi.org/10.1371/journal.pone.0146868
work_keys_str_mv AT huanglijie amultiatlaslabelingapproachforidentifyingsubjectspecificfunctionalregionsofinterest
AT zhouguangfu amultiatlaslabelingapproachforidentifyingsubjectspecificfunctionalregionsofinterest
AT liuzhaoguo amultiatlaslabelingapproachforidentifyingsubjectspecificfunctionalregionsofinterest
AT dangxiaobin amultiatlaslabelingapproachforidentifyingsubjectspecificfunctionalregionsofinterest
AT yangzetian amultiatlaslabelingapproachforidentifyingsubjectspecificfunctionalregionsofinterest
AT kongxiangzhen amultiatlaslabelingapproachforidentifyingsubjectspecificfunctionalregionsofinterest
AT wangxu amultiatlaslabelingapproachforidentifyingsubjectspecificfunctionalregionsofinterest
AT songyiying amultiatlaslabelingapproachforidentifyingsubjectspecificfunctionalregionsofinterest
AT zhenzonglei amultiatlaslabelingapproachforidentifyingsubjectspecificfunctionalregionsofinterest
AT liujia amultiatlaslabelingapproachforidentifyingsubjectspecificfunctionalregionsofinterest
AT huanglijie multiatlaslabelingapproachforidentifyingsubjectspecificfunctionalregionsofinterest
AT zhouguangfu multiatlaslabelingapproachforidentifyingsubjectspecificfunctionalregionsofinterest
AT liuzhaoguo multiatlaslabelingapproachforidentifyingsubjectspecificfunctionalregionsofinterest
AT dangxiaobin multiatlaslabelingapproachforidentifyingsubjectspecificfunctionalregionsofinterest
AT yangzetian multiatlaslabelingapproachforidentifyingsubjectspecificfunctionalregionsofinterest
AT kongxiangzhen multiatlaslabelingapproachforidentifyingsubjectspecificfunctionalregionsofinterest
AT wangxu multiatlaslabelingapproachforidentifyingsubjectspecificfunctionalregionsofinterest
AT songyiying multiatlaslabelingapproachforidentifyingsubjectspecificfunctionalregionsofinterest
AT zhenzonglei multiatlaslabelingapproachforidentifyingsubjectspecificfunctionalregionsofinterest
AT liujia multiatlaslabelingapproachforidentifyingsubjectspecificfunctionalregionsofinterest