Cargando…

Arabidopsis acyl-acyl carrier protein synthetase AAE15 with medium chain fatty acid specificity is functional in cyanobacteria

Cyanobacteria are potential hosts for the biosynthesis of oleochemical compounds. The metabolic precursors for such compounds are fatty acids and their derivatives, which require chemical activation to become substrates in further conversion steps. We characterized the acyl activating enzyme AAE15 o...

Descripción completa

Detalles Bibliográficos
Autores principales: Kaczmarzyk, Danuta, Hudson, Elton P., Fulda, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4722043/
https://www.ncbi.nlm.nih.gov/pubmed/26797881
http://dx.doi.org/10.1186/s13568-016-0178-z
Descripción
Sumario:Cyanobacteria are potential hosts for the biosynthesis of oleochemical compounds. The metabolic precursors for such compounds are fatty acids and their derivatives, which require chemical activation to become substrates in further conversion steps. We characterized the acyl activating enzyme AAE15 of Arabidopsis encoded by At4g14070, which is a homologue of a cyanobacterial acyl-ACP synthetase (AAS). We expressed AAE15 in insect cells and demonstrated its AAS activity with medium chain fatty acid (C10–C14) substrates in vitro. Furthermore, we used AAE15 to complement a Synechocystisaas deletion mutant and showed that the new strain preferentially incorporates supplied medium chain fatty acids into internal lipid molecules. Based on this data we propose that AAE15 can be utilized in metabolic engineering strategies for cyanobacteria that aim to produce compounds based on medium chain fatty acids.