Cargando…

The stiffening of the cell walls observed during physiological softening of pears

The Young’s modulus of the primary cell walls of pears decreases linearly during the pre-harvest on-tree maturation and increases during postharvest storage, and does not correlate with firmness of fruit. The determination of mechanical properties of cell walls is indispensable for understanding the...

Descripción completa

Detalles Bibliográficos
Autores principales: Zdunek, Artur, Kozioł, Arkadiusz, Cybulska, Justyna, Lekka, Małgorzata, Pieczywek, Piotr M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4722064/
https://www.ncbi.nlm.nih.gov/pubmed/26498014
http://dx.doi.org/10.1007/s00425-015-2423-0
_version_ 1782411313059725312
author Zdunek, Artur
Kozioł, Arkadiusz
Cybulska, Justyna
Lekka, Małgorzata
Pieczywek, Piotr M.
author_facet Zdunek, Artur
Kozioł, Arkadiusz
Cybulska, Justyna
Lekka, Małgorzata
Pieczywek, Piotr M.
author_sort Zdunek, Artur
collection PubMed
description The Young’s modulus of the primary cell walls of pears decreases linearly during the pre-harvest on-tree maturation and increases during postharvest storage, and does not correlate with firmness of fruit. The determination of mechanical properties of cell walls is indispensable for understanding the mechanism of physiological softening and deterioration of quality of fruits during postharvest storage. The Young’s modulus of the primary cell walls from pear fruit (Pyrus communis L., cultivars ‘Conference’ and ‘Xenia’) during pre-harvest maturation and postharvest storage in an ambient atmosphere at 2 °C followed by shelf life was studied using atomic force microscopy (AFM). The results were related to the firmness of fruits, galacturonic acid content in water, chelator, sodium carbonate and insoluble pectin fractions, polygalacturonase and pectin methylesterase activities. The Young’s modulus of the primary cell walls decreased linearly during the last month of pre-harvest maturation from 3.2 ± 1.8 to 1.1 ± 0.7 MPa for ‘Conference’ and from 1.9 ± 1.2 to 0.2 ± 0.1 MPa for ‘Xenia’ which correlated with linear firmness decrease. During postharvest storage the cell wall Young’s modulus increased while firmness continued to decrease. Correlation analysis for the entire period of the experiment showed a lack of straightforward relation between the Young’s modulus of primary cell walls and fruit firmness. The Young’s modulus of cell walls correlated negatively either with galacturonic acid content in sodium carbonate soluble pectin (‘Conference’) or with insoluble pectin fractions (‘Xenia’) and positively with polygalacturonase activity. It was therefore evidenced that covalently linked pectins play the key role for the stiffness of fruit cell walls. Based on the obtained results, the model explaining the fruit transition from firm and crispy to soft and mealy was proposed. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00425-015-2423-0) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4722064
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-47220642016-02-01 The stiffening of the cell walls observed during physiological softening of pears Zdunek, Artur Kozioł, Arkadiusz Cybulska, Justyna Lekka, Małgorzata Pieczywek, Piotr M. Planta Original Article The Young’s modulus of the primary cell walls of pears decreases linearly during the pre-harvest on-tree maturation and increases during postharvest storage, and does not correlate with firmness of fruit. The determination of mechanical properties of cell walls is indispensable for understanding the mechanism of physiological softening and deterioration of quality of fruits during postharvest storage. The Young’s modulus of the primary cell walls from pear fruit (Pyrus communis L., cultivars ‘Conference’ and ‘Xenia’) during pre-harvest maturation and postharvest storage in an ambient atmosphere at 2 °C followed by shelf life was studied using atomic force microscopy (AFM). The results were related to the firmness of fruits, galacturonic acid content in water, chelator, sodium carbonate and insoluble pectin fractions, polygalacturonase and pectin methylesterase activities. The Young’s modulus of the primary cell walls decreased linearly during the last month of pre-harvest maturation from 3.2 ± 1.8 to 1.1 ± 0.7 MPa for ‘Conference’ and from 1.9 ± 1.2 to 0.2 ± 0.1 MPa for ‘Xenia’ which correlated with linear firmness decrease. During postharvest storage the cell wall Young’s modulus increased while firmness continued to decrease. Correlation analysis for the entire period of the experiment showed a lack of straightforward relation between the Young’s modulus of primary cell walls and fruit firmness. The Young’s modulus of cell walls correlated negatively either with galacturonic acid content in sodium carbonate soluble pectin (‘Conference’) or with insoluble pectin fractions (‘Xenia’) and positively with polygalacturonase activity. It was therefore evidenced that covalently linked pectins play the key role for the stiffness of fruit cell walls. Based on the obtained results, the model explaining the fruit transition from firm and crispy to soft and mealy was proposed. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00425-015-2423-0) contains supplementary material, which is available to authorized users. Springer Berlin Heidelberg 2015-10-26 2016 /pmc/articles/PMC4722064/ /pubmed/26498014 http://dx.doi.org/10.1007/s00425-015-2423-0 Text en © The Author(s) 2015 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Original Article
Zdunek, Artur
Kozioł, Arkadiusz
Cybulska, Justyna
Lekka, Małgorzata
Pieczywek, Piotr M.
The stiffening of the cell walls observed during physiological softening of pears
title The stiffening of the cell walls observed during physiological softening of pears
title_full The stiffening of the cell walls observed during physiological softening of pears
title_fullStr The stiffening of the cell walls observed during physiological softening of pears
title_full_unstemmed The stiffening of the cell walls observed during physiological softening of pears
title_short The stiffening of the cell walls observed during physiological softening of pears
title_sort stiffening of the cell walls observed during physiological softening of pears
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4722064/
https://www.ncbi.nlm.nih.gov/pubmed/26498014
http://dx.doi.org/10.1007/s00425-015-2423-0
work_keys_str_mv AT zdunekartur thestiffeningofthecellwallsobservedduringphysiologicalsofteningofpears
AT koziołarkadiusz thestiffeningofthecellwallsobservedduringphysiologicalsofteningofpears
AT cybulskajustyna thestiffeningofthecellwallsobservedduringphysiologicalsofteningofpears
AT lekkamałgorzata thestiffeningofthecellwallsobservedduringphysiologicalsofteningofpears
AT pieczywekpiotrm thestiffeningofthecellwallsobservedduringphysiologicalsofteningofpears
AT zdunekartur stiffeningofthecellwallsobservedduringphysiologicalsofteningofpears
AT koziołarkadiusz stiffeningofthecellwallsobservedduringphysiologicalsofteningofpears
AT cybulskajustyna stiffeningofthecellwallsobservedduringphysiologicalsofteningofpears
AT lekkamałgorzata stiffeningofthecellwallsobservedduringphysiologicalsofteningofpears
AT pieczywekpiotrm stiffeningofthecellwallsobservedduringphysiologicalsofteningofpears