Cargando…

Eco-evo-devo of the lemur syndrome: did adaptive behavioral plasticity get canalized in a large primate radiation?

BACKGROUND: Comprehensive explanations of behavioral adaptations rarely invoke all levels famously admonished by Niko Tinbergen. The role of developmental processes and plasticity, in particular, has often been neglected. In this paper, we combine ecological, physiological and developmental perspect...

Descripción completa

Detalles Bibliográficos
Autores principales: Kappeler, Peter M, Fichtel, Claudia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4722368/
https://www.ncbi.nlm.nih.gov/pubmed/26816515
http://dx.doi.org/10.1186/1742-9994-12-S1-S15
Descripción
Sumario:BACKGROUND: Comprehensive explanations of behavioral adaptations rarely invoke all levels famously admonished by Niko Tinbergen. The role of developmental processes and plasticity, in particular, has often been neglected. In this paper, we combine ecological, physiological and developmental perspectives in developing a hypothesis to account for the evolution of ‘the lemur syndrome’, a combination of reduced sexual dimorphism, even adult sex ratios, female dominance and mild genital masculinization characterizing group-living species in two families of Malagasy primates. RESULTS: We review the different components of the lemur syndrome and compare it with similar adaptations reported for other mammals. We find support for the assertion that the lemur syndrome represents a unique set of integrated behavioral, demographic and morphological traits. We combine existing hypotheses about underlying adaptive function and proximate causation by adding a potential developmental mechanism linking maternal stress and filial masculinization, and outline an evolutionary scenario for its canalization. CONCLUSIONS: We propose a new hypothesis linking ecological, physiological, developmental and evolutionary processes to adumbrate a comprehensive explanation for the evolution of the lemur syndrome, whose assumptions and predictions can guide diverse future research on lemurs. This hypothesis should also encourage students of other behavioral phenomena to consider the potential role of developmental plasticity in evolutionary innovation.