Cargando…

Maternal B vitamins: effects on offspring weight and DNA methylation at genomically imprinted domains

BACKGROUND: Inadequate maternal nutrition during early fetal development can create permanent alterations in the offspring, leading to poor health outcomes. While nutrients involved in one-carbon cycle metabolism are important to fetal growth, associations with specific nutrients remain inconsistent...

Descripción completa

Detalles Bibliográficos
Autores principales: McCullough, Lauren E., Miller, Erline E., Mendez, Michelle A., Murtha, Amy P., Murphy, Susan K., Hoyo, Cathrine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4722751/
https://www.ncbi.nlm.nih.gov/pubmed/26807160
http://dx.doi.org/10.1186/s13148-016-0174-9
Descripción
Sumario:BACKGROUND: Inadequate maternal nutrition during early fetal development can create permanent alterations in the offspring, leading to poor health outcomes. While nutrients involved in one-carbon cycle metabolism are important to fetal growth, associations with specific nutrients remain inconsistent. This study estimates associations between maternal vitamins B(12), B(6) (pyridoxal phosphate [PLP] and 4-pyridoxic acid [PA]), and homocysteine (Hcy) concentrations, offspring weight (birth weight and 3-year weight gain), and DNA methylation at four differentially methylated regions (DMRs) known to be involved in fetal growth and development (H19, MEG3, SGCE/PEG10, and PLAGL1). METHODS: Study participants (n = 496) with biomarker and birth weight data were enrolled as part of the Newborn Epigenetics STudy. Weight gain data were available for 273 offspring. Among 484 mother-infant pairs, DNA methylation at regulatory sequences of genomically imprinted genes was measured in umbilical cord blood DNA using bisulfite pyrosequencing. We used generalized linear models to estimate associations. RESULTS: Multivariate adjusted regression models revealed an inverse association between maternal Hcy concentration and male birth weight (β = −210.40, standard error (SE) = 102.08, p = 0.04). The offspring of the mothers in the highest quartile of B(12) experienced lower weight gain between birth and 3 years compared to the offspring of the mothers in the lowest (β = −2203.03, SE = 722.49, p = 0.003). Conversely, maternal PLP was associated with higher weight gain in males; higher maternal PLP concentrations were also associated with offspring DNA methylation levels at the MEG3 DMR (p < 0.01). CONCLUSIONS: While maternal concentrations of B(12), B(6), and Hcy do not associate with birth weight overall, they may play an important role in 3-year weight gain. This is the first study to report an association between maternal PLP and methylation at the MEG3 DMR which may be an important epigenetic tag for maternal B vitamin adequacy. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13148-016-0174-9) contains supplementary material, which is available to authorized users.