Cargando…
Specific Measurement of Tethered Running Kinetics and its Relationship to Repeated Sprint Ability
Repeated sprint ability has been widely studied by researchers, however, analysis of the relationship between most kinetic variables and the effect of fatigue is still an ongoing process. To search for the best biomechanical parameter to evaluate repeated sprint ability, several kinetic variables we...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Akademia Wychowania Fizycznego w Katowicach
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4723174/ https://www.ncbi.nlm.nih.gov/pubmed/26839625 http://dx.doi.org/10.1515/hukin-2015-0127 |
_version_ | 1782411474514214912 |
---|---|
author | Sousa, Filipe dos Reis, Ivan Ribeiro, Luiz Martins, Luiz Gobatto, Claudio |
author_facet | Sousa, Filipe dos Reis, Ivan Ribeiro, Luiz Martins, Luiz Gobatto, Claudio |
author_sort | Sousa, Filipe |
collection | PubMed |
description | Repeated sprint ability has been widely studied by researchers, however, analysis of the relationship between most kinetic variables and the effect of fatigue is still an ongoing process. To search for the best biomechanical parameter to evaluate repeated sprint ability, several kinetic variables were measured in a tethered field running test and compared regarding their sensitivity to fatigue and correlation with time trials in a free running condition. Nine male sprint runners (best average times: 100 m = 10.45 ± 0.07 s; 200 m = 21.36 ± 0.17 s; 400 m = 47.35 ± 1.09 s) completed two test sessions on a synthetic track. Each session consisted of six 35 m sprints interspersed by 10 s rest under tethered field running or free running conditions. Force, power, work, an impulse and a rate of force development were all directly measured using the sensors of a new tethered running apparatus, and a one-way ANOVA with Scheffé post-hoc test used to verify differences between sprints (p < 0.05). Pearson product-moment correlation measured the relationship between mechanical variables and free running performance. A total impulse, the rate of force development and maximum force did not show significant differences for most sprints. These three variables presented low to moderate correlations with free running performance (r between 0.01 and −0.35). Maximum and mean power presented the strongest correlations with free running performance (r = −0.71 and −0.76, respectively; p < 0.001), followed by mean force (r = −0.61; p < 0.001) and total work (r = −0.50; p < 0.001). It was concluded that under a severe work-to-rest ratio condition, power variables were better suited to evaluating repeated sprint ability than the other studied variables. |
format | Online Article Text |
id | pubmed-4723174 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Akademia Wychowania Fizycznego w Katowicach |
record_format | MEDLINE/PubMed |
spelling | pubmed-47231742016-02-02 Specific Measurement of Tethered Running Kinetics and its Relationship to Repeated Sprint Ability Sousa, Filipe dos Reis, Ivan Ribeiro, Luiz Martins, Luiz Gobatto, Claudio J Hum Kinet Research Article Repeated sprint ability has been widely studied by researchers, however, analysis of the relationship between most kinetic variables and the effect of fatigue is still an ongoing process. To search for the best biomechanical parameter to evaluate repeated sprint ability, several kinetic variables were measured in a tethered field running test and compared regarding their sensitivity to fatigue and correlation with time trials in a free running condition. Nine male sprint runners (best average times: 100 m = 10.45 ± 0.07 s; 200 m = 21.36 ± 0.17 s; 400 m = 47.35 ± 1.09 s) completed two test sessions on a synthetic track. Each session consisted of six 35 m sprints interspersed by 10 s rest under tethered field running or free running conditions. Force, power, work, an impulse and a rate of force development were all directly measured using the sensors of a new tethered running apparatus, and a one-way ANOVA with Scheffé post-hoc test used to verify differences between sprints (p < 0.05). Pearson product-moment correlation measured the relationship between mechanical variables and free running performance. A total impulse, the rate of force development and maximum force did not show significant differences for most sprints. These three variables presented low to moderate correlations with free running performance (r between 0.01 and −0.35). Maximum and mean power presented the strongest correlations with free running performance (r = −0.71 and −0.76, respectively; p < 0.001), followed by mean force (r = −0.61; p < 0.001) and total work (r = −0.50; p < 0.001). It was concluded that under a severe work-to-rest ratio condition, power variables were better suited to evaluating repeated sprint ability than the other studied variables. Akademia Wychowania Fizycznego w Katowicach 2015-12-30 /pmc/articles/PMC4723174/ /pubmed/26839625 http://dx.doi.org/10.1515/hukin-2015-0127 Text en © Editorial Committee of Journal of Human Kinetics This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Research Article Sousa, Filipe dos Reis, Ivan Ribeiro, Luiz Martins, Luiz Gobatto, Claudio Specific Measurement of Tethered Running Kinetics and its Relationship to Repeated Sprint Ability |
title | Specific Measurement of Tethered Running Kinetics and its Relationship to Repeated Sprint Ability |
title_full | Specific Measurement of Tethered Running Kinetics and its Relationship to Repeated Sprint Ability |
title_fullStr | Specific Measurement of Tethered Running Kinetics and its Relationship to Repeated Sprint Ability |
title_full_unstemmed | Specific Measurement of Tethered Running Kinetics and its Relationship to Repeated Sprint Ability |
title_short | Specific Measurement of Tethered Running Kinetics and its Relationship to Repeated Sprint Ability |
title_sort | specific measurement of tethered running kinetics and its relationship to repeated sprint ability |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4723174/ https://www.ncbi.nlm.nih.gov/pubmed/26839625 http://dx.doi.org/10.1515/hukin-2015-0127 |
work_keys_str_mv | AT sousafilipe specificmeasurementoftetheredrunningkineticsanditsrelationshiptorepeatedsprintability AT dosreisivan specificmeasurementoftetheredrunningkineticsanditsrelationshiptorepeatedsprintability AT ribeiroluiz specificmeasurementoftetheredrunningkineticsanditsrelationshiptorepeatedsprintability AT martinsluiz specificmeasurementoftetheredrunningkineticsanditsrelationshiptorepeatedsprintability AT gobattoclaudio specificmeasurementoftetheredrunningkineticsanditsrelationshiptorepeatedsprintability |