Cargando…

Dual use of peptide mass spectra: Protein atlas and genome annotation

One of the objectives of genome science is the discovery and accurate annotation of all protein-coding genes. Proteogenomics has emerged as a methodology that provides orthogonal information to traditional forms of evidence used for genome annotation. By this method, peptides that are identified via...

Descripción completa

Detalles Bibliográficos
Autores principales: Walley, Justin W., Briggs, Steven P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4723421/
https://www.ncbi.nlm.nih.gov/pubmed/26811807
http://dx.doi.org/10.1016/j.cpb.2015.02.001
Descripción
Sumario:One of the objectives of genome science is the discovery and accurate annotation of all protein-coding genes. Proteogenomics has emerged as a methodology that provides orthogonal information to traditional forms of evidence used for genome annotation. By this method, peptides that are identified via tandem mass spectrometry are used to refine protein-coding gene models. Namely, these peptides are used to confirm the translation of predicted protein-coding genes, as evidence of novel genes or for correction of current gene models. Proteogenomics requires deep and broad sampling of the proteome in order to generate sufficient numbers of unique peptides. Therefore, we propose that proteogenomic projects are designed so that the generated peptides can also be used to create a comprehensive protein atlas that quantitatively catalogues protein abundance changes during development and in response to environmental stimulus.