Cargando…
Prediction of donor splice sites using random forest with a new sequence encoding approach
BACKGROUND: Detection of splice sites plays a key role for predicting the gene structure and thus development of efficient analytical methods for splice site prediction is vital. This paper presents a novel sequence encoding approach based on the adjacent di-nucleotide dependencies in which the dono...
Autores principales: | Meher, Prabina Kumar, Sahu, Tanmaya Kumar, Rao, Atmakuri Ramakrishna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4724119/ https://www.ncbi.nlm.nih.gov/pubmed/26807151 http://dx.doi.org/10.1186/s13040-016-0086-4 |
Ejemplares similares
-
A statistical approach for 5′ splice site prediction using short sequence motifs and without encoding sequence data
por: Meher, Prabina Kumar, et al.
Publicado: (2014) -
funbarRF: DNA barcode-based fungal species prediction using multiclass Random Forest supervised learning model
por: Meher, Prabina Kumar, et al.
Publicado: (2019) -
mLoc-mRNA: predicting multiple sub-cellular localization of mRNAs using random forest algorithm coupled with feature selection via elastic net
por: Meher, Prabina Kumar, et al.
Publicado: (2021) -
Identification of donor splice sites using support vector machine: a computational approach based on positional, compositional and dependency features
por: Meher, Prabina Kumar, et al.
Publicado: (2016) -
DIRProt: a computational approach for discriminating insecticide resistant proteins from non-resistant proteins
por: Meher, Prabina Kumar, et al.
Publicado: (2017)