Cargando…

An integrated biochemical system for nitrate assimilation and nitric oxide detoxification in Bradyrhizobium japonicum

Rhizobia are recognized to establish N(2)-fixing symbiotic interactions with legume plants. Bradyrhizobium japonicum, the symbiont of soybeans, can denitrify and grow under free-living conditions with nitrate (NO(3)(−)) or nitrite (NO(2)(−)) as sole nitrogen source. Unlike related bacteria that assi...

Descripción completa

Detalles Bibliográficos
Autores principales: Cabrera, Juan J., Salas, Ana, Torres, María J., Bedmar, Eulogio J., Richardson, David J., Gates, Andrew J., Delgado, María J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4724949/
https://www.ncbi.nlm.nih.gov/pubmed/26564204
http://dx.doi.org/10.1042/BJ20150880
_version_ 1782411598922514432
author Cabrera, Juan J.
Salas, Ana
Torres, María J.
Bedmar, Eulogio J.
Richardson, David J.
Gates, Andrew J.
Delgado, María J.
author_facet Cabrera, Juan J.
Salas, Ana
Torres, María J.
Bedmar, Eulogio J.
Richardson, David J.
Gates, Andrew J.
Delgado, María J.
author_sort Cabrera, Juan J.
collection PubMed
description Rhizobia are recognized to establish N(2)-fixing symbiotic interactions with legume plants. Bradyrhizobium japonicum, the symbiont of soybeans, can denitrify and grow under free-living conditions with nitrate (NO(3)(−)) or nitrite (NO(2)(−)) as sole nitrogen source. Unlike related bacteria that assimilate NO(3)(−), genes encoding the assimilatory NO(3)(−) reductase (nasC) and NO(2)(−) reductase (nirA) in B. japonicum are located at distinct chromosomal loci. The nasC gene is located with genes encoding an ABC-type NO(3)(−) transporter, a major facilitator family NO(3)(−)/NO(2)(−) transporter (NarK), flavoprotein (Flp) and single-domain haemoglobin (termed Bjgb). However, nirA clusters with genes for a NO(3)(−)/NO(2)(−)-responsive regulator (NasS-NasT). In the present study, we demonstrate NasC and NirA are both key for NO(3)(−) assimilation and that growth with NO(3)(−), but not NO(2)(−) requires flp, implying Flp may function as electron donor to NasC. In addition, bjgb and flp encode a nitric oxide (NO) detoxification system that functions to mitigate cytotoxic NO formed as a by-product of NO(3)(−) assimilation. Additional experiments reveal NasT is required for NO(3)(−)-responsive expression of the narK-bjgb-flp-nasC transcriptional unit and the nirA gene and that NasS is also involved in the regulatory control of this novel bipartite assimilatory NO(3)(−)/NO(2)(−) reductase pathway.
format Online
Article
Text
id pubmed-4724949
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Portland Press Ltd.
record_format MEDLINE/PubMed
spelling pubmed-47249492016-01-27 An integrated biochemical system for nitrate assimilation and nitric oxide detoxification in Bradyrhizobium japonicum Cabrera, Juan J. Salas, Ana Torres, María J. Bedmar, Eulogio J. Richardson, David J. Gates, Andrew J. Delgado, María J. Biochem J Research Articles Rhizobia are recognized to establish N(2)-fixing symbiotic interactions with legume plants. Bradyrhizobium japonicum, the symbiont of soybeans, can denitrify and grow under free-living conditions with nitrate (NO(3)(−)) or nitrite (NO(2)(−)) as sole nitrogen source. Unlike related bacteria that assimilate NO(3)(−), genes encoding the assimilatory NO(3)(−) reductase (nasC) and NO(2)(−) reductase (nirA) in B. japonicum are located at distinct chromosomal loci. The nasC gene is located with genes encoding an ABC-type NO(3)(−) transporter, a major facilitator family NO(3)(−)/NO(2)(−) transporter (NarK), flavoprotein (Flp) and single-domain haemoglobin (termed Bjgb). However, nirA clusters with genes for a NO(3)(−)/NO(2)(−)-responsive regulator (NasS-NasT). In the present study, we demonstrate NasC and NirA are both key for NO(3)(−) assimilation and that growth with NO(3)(−), but not NO(2)(−) requires flp, implying Flp may function as electron donor to NasC. In addition, bjgb and flp encode a nitric oxide (NO) detoxification system that functions to mitigate cytotoxic NO formed as a by-product of NO(3)(−) assimilation. Additional experiments reveal NasT is required for NO(3)(−)-responsive expression of the narK-bjgb-flp-nasC transcriptional unit and the nirA gene and that NasS is also involved in the regulatory control of this novel bipartite assimilatory NO(3)(−)/NO(2)(−) reductase pathway. Portland Press Ltd. 2016-01-25 2016-02-01 /pmc/articles/PMC4724949/ /pubmed/26564204 http://dx.doi.org/10.1042/BJ20150880 Text en © 2016 Authors http://creativecommons.org/licenses/by/3.0/ This is an open access article published by Portland Press Limited and distributed under the Creative Commons Attribution License 3.0 (http://creativecommons.org/licenses/by/3.0/) .
spellingShingle Research Articles
Cabrera, Juan J.
Salas, Ana
Torres, María J.
Bedmar, Eulogio J.
Richardson, David J.
Gates, Andrew J.
Delgado, María J.
An integrated biochemical system for nitrate assimilation and nitric oxide detoxification in Bradyrhizobium japonicum
title An integrated biochemical system for nitrate assimilation and nitric oxide detoxification in Bradyrhizobium japonicum
title_full An integrated biochemical system for nitrate assimilation and nitric oxide detoxification in Bradyrhizobium japonicum
title_fullStr An integrated biochemical system for nitrate assimilation and nitric oxide detoxification in Bradyrhizobium japonicum
title_full_unstemmed An integrated biochemical system for nitrate assimilation and nitric oxide detoxification in Bradyrhizobium japonicum
title_short An integrated biochemical system for nitrate assimilation and nitric oxide detoxification in Bradyrhizobium japonicum
title_sort integrated biochemical system for nitrate assimilation and nitric oxide detoxification in bradyrhizobium japonicum
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4724949/
https://www.ncbi.nlm.nih.gov/pubmed/26564204
http://dx.doi.org/10.1042/BJ20150880
work_keys_str_mv AT cabrerajuanj anintegratedbiochemicalsystemfornitrateassimilationandnitricoxidedetoxificationinbradyrhizobiumjaponicum
AT salasana anintegratedbiochemicalsystemfornitrateassimilationandnitricoxidedetoxificationinbradyrhizobiumjaponicum
AT torresmariaj anintegratedbiochemicalsystemfornitrateassimilationandnitricoxidedetoxificationinbradyrhizobiumjaponicum
AT bedmareulogioj anintegratedbiochemicalsystemfornitrateassimilationandnitricoxidedetoxificationinbradyrhizobiumjaponicum
AT richardsondavidj anintegratedbiochemicalsystemfornitrateassimilationandnitricoxidedetoxificationinbradyrhizobiumjaponicum
AT gatesandrewj anintegratedbiochemicalsystemfornitrateassimilationandnitricoxidedetoxificationinbradyrhizobiumjaponicum
AT delgadomariaj anintegratedbiochemicalsystemfornitrateassimilationandnitricoxidedetoxificationinbradyrhizobiumjaponicum
AT cabrerajuanj integratedbiochemicalsystemfornitrateassimilationandnitricoxidedetoxificationinbradyrhizobiumjaponicum
AT salasana integratedbiochemicalsystemfornitrateassimilationandnitricoxidedetoxificationinbradyrhizobiumjaponicum
AT torresmariaj integratedbiochemicalsystemfornitrateassimilationandnitricoxidedetoxificationinbradyrhizobiumjaponicum
AT bedmareulogioj integratedbiochemicalsystemfornitrateassimilationandnitricoxidedetoxificationinbradyrhizobiumjaponicum
AT richardsondavidj integratedbiochemicalsystemfornitrateassimilationandnitricoxidedetoxificationinbradyrhizobiumjaponicum
AT gatesandrewj integratedbiochemicalsystemfornitrateassimilationandnitricoxidedetoxificationinbradyrhizobiumjaponicum
AT delgadomariaj integratedbiochemicalsystemfornitrateassimilationandnitricoxidedetoxificationinbradyrhizobiumjaponicum