Cargando…
Phylogenomic analysis reveals genome-wide purifying selection on TBE transposons in the ciliate Oxytricha
BACKGROUND: Transposable elements are a major player contributing to genetic variation and shaping genome evolution. Multiple independent transposon domestication events have occurred in ciliates, recruiting transposases to key roles in cellular processes. In the ciliate Oxytricha trifallax, the tel...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4724952/ https://www.ncbi.nlm.nih.gov/pubmed/26811739 http://dx.doi.org/10.1186/s13100-016-0057-9 |
Sumario: | BACKGROUND: Transposable elements are a major player contributing to genetic variation and shaping genome evolution. Multiple independent transposon domestication events have occurred in ciliates, recruiting transposases to key roles in cellular processes. In the ciliate Oxytricha trifallax, the telomere-bearing elements (TBE), a Tc1/mariner transposon, occupy a significant portion of the germline genome and are involved in programmed genome rearrangements that produce a transcriptionally active somatic nucleus from a copy of the germline nucleus during development. RESULTS: Here we provide a thorough characterization of the distribution and sequences of TBE transposons in the Oxytricha germline genome. We annotate more than 10,000 complete and 24,000 partial TBE sequences. TBEs cluster into four major families and display a preference for either insertion into DNA segments that are retained in the somatic genome or their maintenance at such sites. The three TBE-encoded genes in all four families display dN/dS ratios much lower than 1, suggesting genome-wide purifying selection. We also identify TBE homologs in other ciliate species for phylogenomic analysis. CONCLUSIONS: This paper provides genome-wide characterization of a major class of ciliate transposons. Phylogenomic analysis reveals selective constraints on transposon-encoded genes, shedding light on the evolution and domesticated functions of these transposons. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13100-016-0057-9) contains supplementary material, which is available to authorized users. |
---|