Cargando…
Controlling Gaussian and mean curvatures at microscale by sublimation and condensation of smectic liquid crystals
Soft materials with layered structure such as membranes, block copolymers and smectics exhibit intriguing morphologies with nontrivial curvatures. Here, we report restructuring the Gaussian and mean curvatures of smectic A films with free surface in the process of sintering, that is, reshaping at el...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4725769/ https://www.ncbi.nlm.nih.gov/pubmed/26725975 http://dx.doi.org/10.1038/ncomms10236 |
Sumario: | Soft materials with layered structure such as membranes, block copolymers and smectics exhibit intriguing morphologies with nontrivial curvatures. Here, we report restructuring the Gaussian and mean curvatures of smectic A films with free surface in the process of sintering, that is, reshaping at elevated temperatures. The pattern of alternating patches of negative, zero and positive mean curvature of the air–smectic interface has a profound effect on the rate of sublimation. As a result of sublimation, condensation and restructuring, initially equilibrium smectic films with negative and zero Gaussian curvature are transformed into structures with pronounced positive Gaussian curvature of layers packing, which are rare in the samples obtained by cooling from the isotropic melt. The observed relationship between the curvatures, bulk elastic behaviour and interfacial geometries in sintering of smectic liquid crystals might pave the way for new approaches to control soft morphologies at micron and submicron scales. |
---|