Cargando…

Host-associated coral reef microbes respond to the cumulative pressures of ocean warming and ocean acidification

Key calcifying reef taxa are currently threatened by thermal stress associated with elevated sea surface temperatures (SST) and reduced calcification linked to ocean acidification (OA). Here we undertook an 8 week experimental exposure to near-future climate change conditions and explored the microb...

Descripción completa

Detalles Bibliográficos
Autores principales: Webster, N. S., Negri, A. P., Botté, E. S., Laffy, P. W., Flores, F., Noonan, S., Schmidt, C., Uthicke, S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4725835/
https://www.ncbi.nlm.nih.gov/pubmed/26758800
http://dx.doi.org/10.1038/srep19324
Descripción
Sumario:Key calcifying reef taxa are currently threatened by thermal stress associated with elevated sea surface temperatures (SST) and reduced calcification linked to ocean acidification (OA). Here we undertook an 8 week experimental exposure to near-future climate change conditions and explored the microbiome response of the corals Acropora millepora and Seriatopora hystrix, the crustose coralline algae Hydrolithon onkodes, the foraminifera Marginopora vertebralis and Heterostegina depressa and the sea urchin Echinometra sp. Microbial communities of all taxa were tolerant of elevated pCO(2)/reduced pH, exhibiting stable microbial communities between pH 8.1 (pCO(2) 479–499 μatm) and pH 7.9 (pCO(2) 738–835 μatm). In contrast, microbial communities of the CCA and foraminifera were sensitive to elevated seawater temperature, with a significant microbial shift involving loss of specific taxa and appearance of novel microbial groups occurring between 28 and 31 °C. An interactive effect between stressors was also identified, with distinct communities developing under different pCO(2) conditions only evident at 31 °C. Microbiome analysis of key calcifying coral reef species under near-future climate conditions highlights the importance of assessing impacts from both increased SST and OA, as combinations of these global stressors can amplify microbial shifts which may have concomitant impacts for coral reef structure and function.