Cargando…
Aqueous Angiography: Real-Time and Physiologic Aqueous Humor Outflow Imaging
PURPOSE: Trabecular meshwork (TM) bypass surgeries attempt to enhance aqueous humor outflow (AHO) to lower intraocular pressure (IOP). While TM bypass results are promising, inconsistent success is seen. One hypothesis for this variability rests upon segmental (non-360 degrees uniform) AHO. We descr...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4725949/ https://www.ncbi.nlm.nih.gov/pubmed/26807586 http://dx.doi.org/10.1371/journal.pone.0147176 |
_version_ | 1782411713727954944 |
---|---|
author | Saraswathy, Sindhu Tan, James C. H. Yu, Fei Francis, Brian A. Hinton, David R. Weinreb, Robert N. Huang, Alex S. |
author_facet | Saraswathy, Sindhu Tan, James C. H. Yu, Fei Francis, Brian A. Hinton, David R. Weinreb, Robert N. Huang, Alex S. |
author_sort | Saraswathy, Sindhu |
collection | PubMed |
description | PURPOSE: Trabecular meshwork (TM) bypass surgeries attempt to enhance aqueous humor outflow (AHO) to lower intraocular pressure (IOP). While TM bypass results are promising, inconsistent success is seen. One hypothesis for this variability rests upon segmental (non-360 degrees uniform) AHO. We describe aqueous angiography as a real-time and physiologic AHO imaging technique in model eyes as a way to simulate live AHO imaging. METHODS: Pig (n = 46) and human (n = 6) enucleated eyes were obtained, orientated based upon inferior oblique insertion, and pre-perfused with balanced salt solution via a Lewicky AC maintainer through a 1mm side-port. Fluorescein (2.5%) was introduced intracamerally at 10 or 30 mm Hg. With an angiographer, infrared and fluorescent (486 nm) images were acquired. Image processing allowed for collection of pixel information based on intensity or location for statistical analyses. Concurrent OCT was performed, and fixable fluorescent dextrans were introduced into the eye for histological analysis of angiographically active areas. RESULTS: Aqueous angiography yielded high quality images with segmental patterns (p<0.0001; Kruskal-Wallis test). No single quadrant was consistently identified as the primary quadrant of angiographic signal (p = 0.06–0.86; Kruskal-Wallis test). Regions of high proximal signal did not necessarily correlate with regions of high distal signal. Angiographically positive but not negative areas demonstrated intrascleral lumens on OCT images. Aqueous angiography with fluorescent dextrans led to their trapping in AHO pathways. CONCLUSIONS: Aqueous angiography is a real-time and physiologic AHO imaging technique in model eyes. |
format | Online Article Text |
id | pubmed-4725949 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-47259492016-02-03 Aqueous Angiography: Real-Time and Physiologic Aqueous Humor Outflow Imaging Saraswathy, Sindhu Tan, James C. H. Yu, Fei Francis, Brian A. Hinton, David R. Weinreb, Robert N. Huang, Alex S. PLoS One Research Article PURPOSE: Trabecular meshwork (TM) bypass surgeries attempt to enhance aqueous humor outflow (AHO) to lower intraocular pressure (IOP). While TM bypass results are promising, inconsistent success is seen. One hypothesis for this variability rests upon segmental (non-360 degrees uniform) AHO. We describe aqueous angiography as a real-time and physiologic AHO imaging technique in model eyes as a way to simulate live AHO imaging. METHODS: Pig (n = 46) and human (n = 6) enucleated eyes were obtained, orientated based upon inferior oblique insertion, and pre-perfused with balanced salt solution via a Lewicky AC maintainer through a 1mm side-port. Fluorescein (2.5%) was introduced intracamerally at 10 or 30 mm Hg. With an angiographer, infrared and fluorescent (486 nm) images were acquired. Image processing allowed for collection of pixel information based on intensity or location for statistical analyses. Concurrent OCT was performed, and fixable fluorescent dextrans were introduced into the eye for histological analysis of angiographically active areas. RESULTS: Aqueous angiography yielded high quality images with segmental patterns (p<0.0001; Kruskal-Wallis test). No single quadrant was consistently identified as the primary quadrant of angiographic signal (p = 0.06–0.86; Kruskal-Wallis test). Regions of high proximal signal did not necessarily correlate with regions of high distal signal. Angiographically positive but not negative areas demonstrated intrascleral lumens on OCT images. Aqueous angiography with fluorescent dextrans led to their trapping in AHO pathways. CONCLUSIONS: Aqueous angiography is a real-time and physiologic AHO imaging technique in model eyes. Public Library of Science 2016-01-25 /pmc/articles/PMC4725949/ /pubmed/26807586 http://dx.doi.org/10.1371/journal.pone.0147176 Text en © 2016 Saraswathy et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Saraswathy, Sindhu Tan, James C. H. Yu, Fei Francis, Brian A. Hinton, David R. Weinreb, Robert N. Huang, Alex S. Aqueous Angiography: Real-Time and Physiologic Aqueous Humor Outflow Imaging |
title | Aqueous Angiography: Real-Time and Physiologic Aqueous Humor Outflow Imaging |
title_full | Aqueous Angiography: Real-Time and Physiologic Aqueous Humor Outflow Imaging |
title_fullStr | Aqueous Angiography: Real-Time and Physiologic Aqueous Humor Outflow Imaging |
title_full_unstemmed | Aqueous Angiography: Real-Time and Physiologic Aqueous Humor Outflow Imaging |
title_short | Aqueous Angiography: Real-Time and Physiologic Aqueous Humor Outflow Imaging |
title_sort | aqueous angiography: real-time and physiologic aqueous humor outflow imaging |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4725949/ https://www.ncbi.nlm.nih.gov/pubmed/26807586 http://dx.doi.org/10.1371/journal.pone.0147176 |
work_keys_str_mv | AT saraswathysindhu aqueousangiographyrealtimeandphysiologicaqueoushumoroutflowimaging AT tanjamesch aqueousangiographyrealtimeandphysiologicaqueoushumoroutflowimaging AT yufei aqueousangiographyrealtimeandphysiologicaqueoushumoroutflowimaging AT francisbriana aqueousangiographyrealtimeandphysiologicaqueoushumoroutflowimaging AT hintondavidr aqueousangiographyrealtimeandphysiologicaqueoushumoroutflowimaging AT weinrebrobertn aqueousangiographyrealtimeandphysiologicaqueoushumoroutflowimaging AT huangalexs aqueousangiographyrealtimeandphysiologicaqueoushumoroutflowimaging |