Cargando…
Machine learning bandgaps of double perovskites
The ability to make rapid and accurate predictions on bandgaps of double perovskites is of much practical interest for a range of applications. While quantum mechanical computations for high-fidelity bandgaps are enormously computation-time intensive and thus impractical in high throughput studies,...
Autores principales: | Pilania, G., Mannodi-Kanakkithodi, A., Uberuaga, B. P., Ramprasad, R., Gubernatis, J. E., Lookman, T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4726030/ https://www.ncbi.nlm.nih.gov/pubmed/26783247 http://dx.doi.org/10.1038/srep19375 |
Ejemplares similares
-
Machine Learning Strategy for Accelerated Design of Polymer Dielectrics
por: Mannodi-Kanakkithodi, Arun, et al.
Publicado: (2016) -
Classification of octet AB-type binary compounds using dynamical charges: A materials informatics perspective
por: Pilania, G., et al.
Publicado: (2015) -
A polymer dataset for accelerated property prediction and design
por: Huan, Tran Doan, et al.
Publicado: (2016) -
Universal machine learning framework for defect predictions in zinc blende semiconductors
por: Mannodi-Kanakkithodi, Arun, et al.
Publicado: (2022) -
Bandgap tuning strategy by cations and halide ions of lead halide perovskites learned from machine learning
por: Li, Yaoyao, et al.
Publicado: (2021)