Cargando…

Identification and developmental expression profiling of putative alkaloid biosynthetic genes in Corydalis yanhusuo bulbs

Alkaloids in bulbs of Corydalis (C.) yanhusuo are the major pharmacologically active compounds in treatment of blood vessel diseases, tumors and various pains. However, due to the absence of gene sequences in C. yanhusuo, the genes involved in alkaloid biosynthesis and their expression during bulb d...

Descripción completa

Detalles Bibliográficos
Autores principales: Liao, Dengqun, Wang, Pengfei, Jia, Chan, Sun, Peng, Qi, Jianjun, Zhou, Lili, Li, Xian’en
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4726099/
https://www.ncbi.nlm.nih.gov/pubmed/26777987
http://dx.doi.org/10.1038/srep19460
Descripción
Sumario:Alkaloids in bulbs of Corydalis (C.) yanhusuo are the major pharmacologically active compounds in treatment of blood vessel diseases, tumors and various pains. However, due to the absence of gene sequences in C. yanhusuo, the genes involved in alkaloid biosynthesis and their expression during bulb development remain unknown. We therefore established the first transcriptome database of C. yanhusuo via Illumina mRNA-Sequencing of a RNA composite sample collected at Bulb initiation (Day 0), early enlargement (Day 10) and maturation (Day 30). 25,013,630 clean 90 bp paired-end reads were de novo assembled into 47,081 unigenes with an average length of 489 bp, among which 30,868 unigenes (65.56%) were annotated in four protein databases. Of 526 putative unigenes involved in biosynthesis o f various alkaloids, 187 were identified as the candidate genes involved in the biosynthesis of benzylisoquinoline alkaloids (BIAs), the only alkaloid type reported in C. yanhusuo untill now. BIAs biosynthetic genes were highly upregulated in the overall pathway during bulb development. Identification of alkaloid biosynthetic genes in C. yanhusuo provide insights on pathways and molecular regulation of alkaloid biosynthesis, to initiate metabolic engineering in order to improve the yield of interesting alkaloids and to identify potentially new alkaloids predicted from the transcriptomic information.