Cargando…
The Foot’s Arch and the Energetics of Human Locomotion
The energy-sparing spring theory of the foot’s arch has become central to interpretations of the foot’s mechanical function and evolution. Using a novel insole technique that restricted compression of the foot’s longitudinal arch, this study provides the first direct evidence that arch compression/r...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4726102/ https://www.ncbi.nlm.nih.gov/pubmed/26783259 http://dx.doi.org/10.1038/srep19403 |
Sumario: | The energy-sparing spring theory of the foot’s arch has become central to interpretations of the foot’s mechanical function and evolution. Using a novel insole technique that restricted compression of the foot’s longitudinal arch, this study provides the first direct evidence that arch compression/recoil during locomotion contributes to lowering energy cost. Restricting arch compression near maximally (~80%) during moderate-speed (2.7 ms(−1)) level running increased metabolic cost by + 6.0% (p < 0.001, d = 0.67; unaffected by foot strike technique). A simple model shows that the metabolic energy saved by the arch is largely explained by the passive-elastic work it supplies that would otherwise be done by active muscle. Both experimental and model data confirm that it is the end-range of arch compression that dictates the energy-saving role of the arch. Restricting arch compression had no effect on the cost of walking or incline running (3°), commensurate with the smaller role of passive-elastic mechanics in these gaits. These findings substantiate the elastic energy-saving role of the longitudinal arch during running, and suggest that arch supports used in some footwear and orthotics may increase the cost of running. |
---|