Cargando…

Dmy initiates masculinity by altering Gsdf/Sox9a2/Rspo1 expression in medaka (Oryzias latipes)

Despite identification of several sex-determining genes in non-mammalian vertebrates, their detailed molecular cascades of sex determination/differentiation are not known. Here, we used a novel RNAi to characterise the molecular mechanism of Dmy (the sex-determining gene of medaka)-mediated masculin...

Descripción completa

Detalles Bibliográficos
Autores principales: Chakraborty, Tapas, Zhou, Lin Yan, Chaudhari, Aparna, Iguchi, Taisen, Nagahama, Y.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4726206/
https://www.ncbi.nlm.nih.gov/pubmed/26806354
http://dx.doi.org/10.1038/srep19480
Descripción
Sumario:Despite identification of several sex-determining genes in non-mammalian vertebrates, their detailed molecular cascades of sex determination/differentiation are not known. Here, we used a novel RNAi to characterise the molecular mechanism of Dmy (the sex-determining gene of medaka)-mediated masculinity in XY fish. Dmy knockdown (Dmy-KD) suppressed male pathway (Gsdf, Sox9a2, etc.) and favoured female cascade (Rspo1, etc.) in embryonic XY gonads, resulting in a fertile male-to-female sex-reversal. Gsdf, Sox9a2, and Rspo1 directly interacted with Dmy, and co-injection of Gsdf and Sox9a2 re-established masculinity in XY-Dmy-KD transgenics, insinuating that Dmy initiates masculinity by stimulating and suppressing Gsdf/Sox9a2 and Rspo1 expression, respectively. Gonadal expression of Wt1a starts prior to Dmy and didn’t change upon Dmy-KD. Furthermore, Wt1a stimulated the promoter activity of Dmy, suggesting Wt1a as a regulator of Dmy. These findings provide new insights into the role of vertebrate sex-determining genes associated with the molecular interplay between the male and female pathways.