Cargando…

The role of motility and chemotaxis in the bacterial colonization of protected surfaces

Internal epithelial surfaces in humans are both oxygenated and physically protected by a few hundred microns thick hydrogel mucosal layer, conditions that might support bacterial aerotaxis. However, the potential role of aerotaxis in crossing such a thin hydrogel layer is not clear. Here, we used a...

Descripción completa

Detalles Bibliográficos
Autores principales: Tamar, Einat, Koler, Moriah, Vaknin, Ady
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4726332/
https://www.ncbi.nlm.nih.gov/pubmed/26792493
http://dx.doi.org/10.1038/srep19616
Descripción
Sumario:Internal epithelial surfaces in humans are both oxygenated and physically protected by a few hundred microns thick hydrogel mucosal layer, conditions that might support bacterial aerotaxis. However, the potential role of aerotaxis in crossing such a thin hydrogel layer is not clear. Here, we used a new setup to study the potential role of motility and chemotaxis in the bacterial colonization of surfaces covered by a thin hydrogel layer and subjected to a vertical oxygen gradient. Using the bacterium Escherichia coli, we show that both non-motile and motile-but-non-chemotactic bacteria could barely reach the surface. However, an acquired mutation in the non-chemotactic bacteria that altered their inherent swimming behavior led to a critical enhancement of surface colonization. Most chemotactic strains accumulated within the bulk of the hydrogel layer, except for the MG1655 strain, which showed a unique tendency to accumulate directly at the oxygenated surface and thus exhibited distinctly enhanced colonization. Even after a long period of bacterial growth, non-motile bacteria could not colonize the hydrogel. Thus, switching motility, which can be spontaneously acquired or altered in vivo, is critical for the colonization of such protected surfaces, whereas aerotaxis capacity clearly expedites surface colonization, and can lead to diverse colonization patterns.