Cargando…
Effect of Copper and Zinc on the Single Molecule Self-Affinity of Alzheimer’s Amyloid-β Peptides
The presence of trace concentrations of metallic ions, such as copper and zinc, has previously been shown to drastically increase the aggregation rate and neurotoxicity of amyloid-β (Aβ), the peptide implicated in Alzheimer’s disease (AD). The mechanism of why copper and zinc accelerate Aβ aggregati...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4726707/ https://www.ncbi.nlm.nih.gov/pubmed/26808970 http://dx.doi.org/10.1371/journal.pone.0147488 |
_version_ | 1782411871662374912 |
---|---|
author | Hane, Francis T. Hayes, Reid Lee, Brenda Y. Leonenko, Zoya |
author_facet | Hane, Francis T. Hayes, Reid Lee, Brenda Y. Leonenko, Zoya |
author_sort | Hane, Francis T. |
collection | PubMed |
description | The presence of trace concentrations of metallic ions, such as copper and zinc, has previously been shown to drastically increase the aggregation rate and neurotoxicity of amyloid-β (Aβ), the peptide implicated in Alzheimer’s disease (AD). The mechanism of why copper and zinc accelerate Aβ aggregation is poorly understood. In this work, we use single molecule force spectroscopy (SMFS) to probe the kinetic and thermodynamic parameters (dissociation constant, K(d), kinetic dissociation rate, k(off), and free energy, ΔG) of the dissociation of an Aβ dimer, the amyloid species which initiates the amyloid cascade. Our results show that nanomolar concentrations of copper do not change the single molecule affinity of Aβ to another Aβ peptide in a statistically significant way, while nanomolar concentrations of zinc decrease the affinity of Aβ-Aβ by an order of magnitude. This suggests that the binding of zinc ion to Aβ may interfere with the binding of Aβ-Aβ, leading to a lower self-affinity. |
format | Online Article Text |
id | pubmed-4726707 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-47267072016-02-03 Effect of Copper and Zinc on the Single Molecule Self-Affinity of Alzheimer’s Amyloid-β Peptides Hane, Francis T. Hayes, Reid Lee, Brenda Y. Leonenko, Zoya PLoS One Research Article The presence of trace concentrations of metallic ions, such as copper and zinc, has previously been shown to drastically increase the aggregation rate and neurotoxicity of amyloid-β (Aβ), the peptide implicated in Alzheimer’s disease (AD). The mechanism of why copper and zinc accelerate Aβ aggregation is poorly understood. In this work, we use single molecule force spectroscopy (SMFS) to probe the kinetic and thermodynamic parameters (dissociation constant, K(d), kinetic dissociation rate, k(off), and free energy, ΔG) of the dissociation of an Aβ dimer, the amyloid species which initiates the amyloid cascade. Our results show that nanomolar concentrations of copper do not change the single molecule affinity of Aβ to another Aβ peptide in a statistically significant way, while nanomolar concentrations of zinc decrease the affinity of Aβ-Aβ by an order of magnitude. This suggests that the binding of zinc ion to Aβ may interfere with the binding of Aβ-Aβ, leading to a lower self-affinity. Public Library of Science 2016-01-25 /pmc/articles/PMC4726707/ /pubmed/26808970 http://dx.doi.org/10.1371/journal.pone.0147488 Text en © 2016 Hane et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Hane, Francis T. Hayes, Reid Lee, Brenda Y. Leonenko, Zoya Effect of Copper and Zinc on the Single Molecule Self-Affinity of Alzheimer’s Amyloid-β Peptides |
title | Effect of Copper and Zinc on the Single Molecule Self-Affinity of Alzheimer’s Amyloid-β Peptides |
title_full | Effect of Copper and Zinc on the Single Molecule Self-Affinity of Alzheimer’s Amyloid-β Peptides |
title_fullStr | Effect of Copper and Zinc on the Single Molecule Self-Affinity of Alzheimer’s Amyloid-β Peptides |
title_full_unstemmed | Effect of Copper and Zinc on the Single Molecule Self-Affinity of Alzheimer’s Amyloid-β Peptides |
title_short | Effect of Copper and Zinc on the Single Molecule Self-Affinity of Alzheimer’s Amyloid-β Peptides |
title_sort | effect of copper and zinc on the single molecule self-affinity of alzheimer’s amyloid-β peptides |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4726707/ https://www.ncbi.nlm.nih.gov/pubmed/26808970 http://dx.doi.org/10.1371/journal.pone.0147488 |
work_keys_str_mv | AT hanefrancist effectofcopperandzinconthesinglemoleculeselfaffinityofalzheimersamyloidbpeptides AT hayesreid effectofcopperandzinconthesinglemoleculeselfaffinityofalzheimersamyloidbpeptides AT leebrenday effectofcopperandzinconthesinglemoleculeselfaffinityofalzheimersamyloidbpeptides AT leonenkozoya effectofcopperandzinconthesinglemoleculeselfaffinityofalzheimersamyloidbpeptides |