Cargando…
Molecular mechanisms of memory in imprinting
Converging evidence implicates the intermediate and medial mesopallium (IMM) of the domestic chick forebrain in memory for a visual imprinting stimulus. During and after imprinting training, neuronal responsiveness in the IMM to the familiar stimulus exhibits a distinct temporal profile, suggesting...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Pergamon Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4726915/ https://www.ncbi.nlm.nih.gov/pubmed/25280906 http://dx.doi.org/10.1016/j.neubiorev.2014.09.013 |
_version_ | 1782411908522967040 |
---|---|
author | Solomonia, Revaz O. McCabe, Brian J. |
author_facet | Solomonia, Revaz O. McCabe, Brian J. |
author_sort | Solomonia, Revaz O. |
collection | PubMed |
description | Converging evidence implicates the intermediate and medial mesopallium (IMM) of the domestic chick forebrain in memory for a visual imprinting stimulus. During and after imprinting training, neuronal responsiveness in the IMM to the familiar stimulus exhibits a distinct temporal profile, suggesting several memory phases. We discuss the temporal progression of learning-related biochemical changes in the IMM, relative to the start of this electrophysiological profile. c-fos gene expression increases <15 min after training onset, followed by a learning-related increase in Fos expression, in neurons immunopositive for GABA, taurine and parvalbumin (not calbindin). Approximately simultaneously or shortly after, there are increases in phosphorylation level of glutamate (AMPA) receptor subunits and in releasable neurotransmitter pools of GABA and taurine. Later, the mean area of spine synapse post-synaptic densities, N-methyl-d-aspartate receptor number and phosphorylation level of further synaptic proteins are elevated. After ∼15 h, learning-related changes in amounts of several synaptic proteins are observed. The results indicate progression from transient/labile to trophic synaptic modification, culminating in stable recognition memory. |
format | Online Article Text |
id | pubmed-4726915 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Pergamon Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-47269152016-02-22 Molecular mechanisms of memory in imprinting Solomonia, Revaz O. McCabe, Brian J. Neurosci Biobehav Rev Review Converging evidence implicates the intermediate and medial mesopallium (IMM) of the domestic chick forebrain in memory for a visual imprinting stimulus. During and after imprinting training, neuronal responsiveness in the IMM to the familiar stimulus exhibits a distinct temporal profile, suggesting several memory phases. We discuss the temporal progression of learning-related biochemical changes in the IMM, relative to the start of this electrophysiological profile. c-fos gene expression increases <15 min after training onset, followed by a learning-related increase in Fos expression, in neurons immunopositive for GABA, taurine and parvalbumin (not calbindin). Approximately simultaneously or shortly after, there are increases in phosphorylation level of glutamate (AMPA) receptor subunits and in releasable neurotransmitter pools of GABA and taurine. Later, the mean area of spine synapse post-synaptic densities, N-methyl-d-aspartate receptor number and phosphorylation level of further synaptic proteins are elevated. After ∼15 h, learning-related changes in amounts of several synaptic proteins are observed. The results indicate progression from transient/labile to trophic synaptic modification, culminating in stable recognition memory. Pergamon Press 2015-03 /pmc/articles/PMC4726915/ /pubmed/25280906 http://dx.doi.org/10.1016/j.neubiorev.2014.09.013 Text en Crown Copyright © Published by Elsevier Ltd. All rights reserved. http://creativecommons.org/licenses/by/3.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Review Solomonia, Revaz O. McCabe, Brian J. Molecular mechanisms of memory in imprinting |
title | Molecular mechanisms of memory in imprinting |
title_full | Molecular mechanisms of memory in imprinting |
title_fullStr | Molecular mechanisms of memory in imprinting |
title_full_unstemmed | Molecular mechanisms of memory in imprinting |
title_short | Molecular mechanisms of memory in imprinting |
title_sort | molecular mechanisms of memory in imprinting |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4726915/ https://www.ncbi.nlm.nih.gov/pubmed/25280906 http://dx.doi.org/10.1016/j.neubiorev.2014.09.013 |
work_keys_str_mv | AT solomoniarevazo molecularmechanismsofmemoryinimprinting AT mccabebrianj molecularmechanismsofmemoryinimprinting |