Cargando…
Engineering Infectious cDNAs of Coronavirus as Bacterial Artificial Chromosomes
The large size of the coronavirus (CoV) genome (around 30 kb) and the instability in bacteria of plasmids carrying CoV replicase sequences represent serious restrictions for the development of CoV infectious clones using reverse genetic systems similar to those used for smaller positive sense RNA vi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4726977/ https://www.ncbi.nlm.nih.gov/pubmed/25720478 http://dx.doi.org/10.1007/978-1-4939-2438-7_13 |
Sumario: | The large size of the coronavirus (CoV) genome (around 30 kb) and the instability in bacteria of plasmids carrying CoV replicase sequences represent serious restrictions for the development of CoV infectious clones using reverse genetic systems similar to those used for smaller positive sense RNA viruses. To overcome these problems, several approaches have been established in the last 13 years. Here we describe the engineering of CoV full-length cDNA clones as bacterial artificial chromosomes (BACs), using the Middle East respiratory syndrome CoV (MERS-CoV) as a model. |
---|