Cargando…

Multiple imputation of multiple multi-item scales when a full imputation model is infeasible

BACKGROUND: Missing data in a large scale survey presents major challenges. We focus on performing multiple imputation by chained equations when data contain multiple incomplete multi-item scales. Recent authors have proposed imputing such data at the level of the individual item, but this can lead...

Descripción completa

Detalles Bibliográficos
Autores principales: Plumpton, Catrin O., Morris, Tim, Hughes, Dyfrig A., White, Ian R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4727289/
https://www.ncbi.nlm.nih.gov/pubmed/26809812
http://dx.doi.org/10.1186/s13104-016-1853-5
_version_ 1782411939120414720
author Plumpton, Catrin O.
Morris, Tim
Hughes, Dyfrig A.
White, Ian R.
author_facet Plumpton, Catrin O.
Morris, Tim
Hughes, Dyfrig A.
White, Ian R.
author_sort Plumpton, Catrin O.
collection PubMed
description BACKGROUND: Missing data in a large scale survey presents major challenges. We focus on performing multiple imputation by chained equations when data contain multiple incomplete multi-item scales. Recent authors have proposed imputing such data at the level of the individual item, but this can lead to infeasibly large imputation models. METHODS: We use data gathered from a large multinational survey, where analysis uses separate logistic regression models in each of nine country-specific data sets. In these data, applying multiple imputation by chained equations to the individual scale items is computationally infeasible. We propose an adaptation of multiple imputation by chained equations which imputes the individual scale items but reduces the number of variables in the imputation models by replacing most scale items with scale summary scores. We evaluate the feasibility of the proposed approach and compare it with a complete case analysis. We perform a simulation study to compare the proposed method with alternative approaches: we do this in a simplified setting to allow comparison with the full imputation model. RESULTS: For the case study, the proposed approach reduces the size of the prediction models from 134 predictors to a maximum of 72 and makes multiple imputation by chained equations computationally feasible. Distributions of imputed data are seen to be consistent with observed data. Results from the regression analysis with multiple imputation are similar to, but more precise than, results for complete case analysis; for the same regression models a 39 % reduction in the standard error is observed. The simulation shows that our proposed method can perform comparably against the alternatives. CONCLUSIONS: By substantially reducing imputation model sizes, our adaptation makes multiple imputation feasible for large scale survey data with multiple multi-item scales. For the data considered, analysis of the multiply imputed data shows greater power and efficiency than complete case analysis. The adaptation of multiple imputation makes better use of available data and can yield substantively different results from simpler techniques. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13104-016-1853-5) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4727289
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-47272892016-01-27 Multiple imputation of multiple multi-item scales when a full imputation model is infeasible Plumpton, Catrin O. Morris, Tim Hughes, Dyfrig A. White, Ian R. BMC Res Notes Research Article BACKGROUND: Missing data in a large scale survey presents major challenges. We focus on performing multiple imputation by chained equations when data contain multiple incomplete multi-item scales. Recent authors have proposed imputing such data at the level of the individual item, but this can lead to infeasibly large imputation models. METHODS: We use data gathered from a large multinational survey, where analysis uses separate logistic regression models in each of nine country-specific data sets. In these data, applying multiple imputation by chained equations to the individual scale items is computationally infeasible. We propose an adaptation of multiple imputation by chained equations which imputes the individual scale items but reduces the number of variables in the imputation models by replacing most scale items with scale summary scores. We evaluate the feasibility of the proposed approach and compare it with a complete case analysis. We perform a simulation study to compare the proposed method with alternative approaches: we do this in a simplified setting to allow comparison with the full imputation model. RESULTS: For the case study, the proposed approach reduces the size of the prediction models from 134 predictors to a maximum of 72 and makes multiple imputation by chained equations computationally feasible. Distributions of imputed data are seen to be consistent with observed data. Results from the regression analysis with multiple imputation are similar to, but more precise than, results for complete case analysis; for the same regression models a 39 % reduction in the standard error is observed. The simulation shows that our proposed method can perform comparably against the alternatives. CONCLUSIONS: By substantially reducing imputation model sizes, our adaptation makes multiple imputation feasible for large scale survey data with multiple multi-item scales. For the data considered, analysis of the multiply imputed data shows greater power and efficiency than complete case analysis. The adaptation of multiple imputation makes better use of available data and can yield substantively different results from simpler techniques. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13104-016-1853-5) contains supplementary material, which is available to authorized users. BioMed Central 2016-01-26 /pmc/articles/PMC4727289/ /pubmed/26809812 http://dx.doi.org/10.1186/s13104-016-1853-5 Text en © Plumpton et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Plumpton, Catrin O.
Morris, Tim
Hughes, Dyfrig A.
White, Ian R.
Multiple imputation of multiple multi-item scales when a full imputation model is infeasible
title Multiple imputation of multiple multi-item scales when a full imputation model is infeasible
title_full Multiple imputation of multiple multi-item scales when a full imputation model is infeasible
title_fullStr Multiple imputation of multiple multi-item scales when a full imputation model is infeasible
title_full_unstemmed Multiple imputation of multiple multi-item scales when a full imputation model is infeasible
title_short Multiple imputation of multiple multi-item scales when a full imputation model is infeasible
title_sort multiple imputation of multiple multi-item scales when a full imputation model is infeasible
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4727289/
https://www.ncbi.nlm.nih.gov/pubmed/26809812
http://dx.doi.org/10.1186/s13104-016-1853-5
work_keys_str_mv AT plumptoncatrino multipleimputationofmultiplemultiitemscaleswhenafullimputationmodelisinfeasible
AT morristim multipleimputationofmultiplemultiitemscaleswhenafullimputationmodelisinfeasible
AT hughesdyfriga multipleimputationofmultiplemultiitemscaleswhenafullimputationmodelisinfeasible
AT whiteianr multipleimputationofmultiplemultiitemscaleswhenafullimputationmodelisinfeasible