Cargando…
RNA-seq analysis of the gonadal transcriptome during Alligator mississippiensis temperature-dependent sex determination and differentiation
BACKGROUND: The American alligator (Alligator mississippiensis) displays temperature-dependent sex determination (TSD), in which incubation temperature during embryonic development determines the sexual fate of the individual. However, the molecular mechanisms governing this process remain a mystery...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4727388/ https://www.ncbi.nlm.nih.gov/pubmed/26810479 http://dx.doi.org/10.1186/s12864-016-2396-9 |
_version_ | 1782411955879804928 |
---|---|
author | Yatsu, Ryohei Miyagawa, Shinichi Kohno, Satomi Parrott, Benjamin B. Yamaguchi, Katsushi Ogino, Yukiko Miyakawa, Hitoshi Lowers, Russell H. Shigenobu, Shuji Guillette, Louis J. Iguchi, Taisen |
author_facet | Yatsu, Ryohei Miyagawa, Shinichi Kohno, Satomi Parrott, Benjamin B. Yamaguchi, Katsushi Ogino, Yukiko Miyakawa, Hitoshi Lowers, Russell H. Shigenobu, Shuji Guillette, Louis J. Iguchi, Taisen |
author_sort | Yatsu, Ryohei |
collection | PubMed |
description | BACKGROUND: The American alligator (Alligator mississippiensis) displays temperature-dependent sex determination (TSD), in which incubation temperature during embryonic development determines the sexual fate of the individual. However, the molecular mechanisms governing this process remain a mystery, including the influence of initial environmental temperature on the comprehensive gonadal gene expression patterns occurring during TSD. RESULTS: Our characterization of transcriptomes during alligator TSD allowed us to identify novel candidate genes involved in TSD initiation. High-throughput RNA sequencing (RNA-seq) was performed on gonads collected from A. mississippiensis embryos incubated at both a male and a female producing temperature (33.5 °C and 30 °C, respectively) in a time series during sexual development. RNA-seq yielded 375.2 million paired-end reads, which were mapped and assembled, and used to characterize differential gene expression. Changes in the transcriptome occurring as a function of both development and sexual differentiation were extensively profiled. Forty-one differentially expressed genes were detected in response to incubation at male producing temperature, and included genes such as Wnt signaling factor WNT11, histone demethylase KDM6B, and transcription factor C/EBPA. Furthermore, comparative analysis of development- and sex-dependent differential gene expression revealed 230 candidate genes involved in alligator sex determination and differentiation, and early details of the suspected male-fate commitment were profiled. We also discovered sexually dimorphic expression of uncharacterized ncRNAs and other novel elements, such as unique expression patterns of HEMGN and ARX. Twenty-five of the differentially expressed genes identified in our analysis were putative transcriptional regulators, among which were MYBL2, MYCL, and HOXC10, in addition to conventional sex differentiation genes such as SOX9, and FOXL2. Inferred gene regulatory network was constructed, and the gene-gene and temperature-gene interactions were predicted. CONCLUSIONS: Gonadal global gene expression kinetics during sex determination has been extensively profiled for the first time in a TSD species. These findings provide insights into the genetic framework underlying TSD, and expand our current understanding of the developmental fate pathways during vertebrate sex determination. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-016-2396-9) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4727388 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-47273882016-01-27 RNA-seq analysis of the gonadal transcriptome during Alligator mississippiensis temperature-dependent sex determination and differentiation Yatsu, Ryohei Miyagawa, Shinichi Kohno, Satomi Parrott, Benjamin B. Yamaguchi, Katsushi Ogino, Yukiko Miyakawa, Hitoshi Lowers, Russell H. Shigenobu, Shuji Guillette, Louis J. Iguchi, Taisen BMC Genomics Research Article BACKGROUND: The American alligator (Alligator mississippiensis) displays temperature-dependent sex determination (TSD), in which incubation temperature during embryonic development determines the sexual fate of the individual. However, the molecular mechanisms governing this process remain a mystery, including the influence of initial environmental temperature on the comprehensive gonadal gene expression patterns occurring during TSD. RESULTS: Our characterization of transcriptomes during alligator TSD allowed us to identify novel candidate genes involved in TSD initiation. High-throughput RNA sequencing (RNA-seq) was performed on gonads collected from A. mississippiensis embryos incubated at both a male and a female producing temperature (33.5 °C and 30 °C, respectively) in a time series during sexual development. RNA-seq yielded 375.2 million paired-end reads, which were mapped and assembled, and used to characterize differential gene expression. Changes in the transcriptome occurring as a function of both development and sexual differentiation were extensively profiled. Forty-one differentially expressed genes were detected in response to incubation at male producing temperature, and included genes such as Wnt signaling factor WNT11, histone demethylase KDM6B, and transcription factor C/EBPA. Furthermore, comparative analysis of development- and sex-dependent differential gene expression revealed 230 candidate genes involved in alligator sex determination and differentiation, and early details of the suspected male-fate commitment were profiled. We also discovered sexually dimorphic expression of uncharacterized ncRNAs and other novel elements, such as unique expression patterns of HEMGN and ARX. Twenty-five of the differentially expressed genes identified in our analysis were putative transcriptional regulators, among which were MYBL2, MYCL, and HOXC10, in addition to conventional sex differentiation genes such as SOX9, and FOXL2. Inferred gene regulatory network was constructed, and the gene-gene and temperature-gene interactions were predicted. CONCLUSIONS: Gonadal global gene expression kinetics during sex determination has been extensively profiled for the first time in a TSD species. These findings provide insights into the genetic framework underlying TSD, and expand our current understanding of the developmental fate pathways during vertebrate sex determination. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-016-2396-9) contains supplementary material, which is available to authorized users. BioMed Central 2016-01-25 /pmc/articles/PMC4727388/ /pubmed/26810479 http://dx.doi.org/10.1186/s12864-016-2396-9 Text en © Yatsu et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Yatsu, Ryohei Miyagawa, Shinichi Kohno, Satomi Parrott, Benjamin B. Yamaguchi, Katsushi Ogino, Yukiko Miyakawa, Hitoshi Lowers, Russell H. Shigenobu, Shuji Guillette, Louis J. Iguchi, Taisen RNA-seq analysis of the gonadal transcriptome during Alligator mississippiensis temperature-dependent sex determination and differentiation |
title | RNA-seq analysis of the gonadal transcriptome during Alligator mississippiensis temperature-dependent sex determination and differentiation |
title_full | RNA-seq analysis of the gonadal transcriptome during Alligator mississippiensis temperature-dependent sex determination and differentiation |
title_fullStr | RNA-seq analysis of the gonadal transcriptome during Alligator mississippiensis temperature-dependent sex determination and differentiation |
title_full_unstemmed | RNA-seq analysis of the gonadal transcriptome during Alligator mississippiensis temperature-dependent sex determination and differentiation |
title_short | RNA-seq analysis of the gonadal transcriptome during Alligator mississippiensis temperature-dependent sex determination and differentiation |
title_sort | rna-seq analysis of the gonadal transcriptome during alligator mississippiensis temperature-dependent sex determination and differentiation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4727388/ https://www.ncbi.nlm.nih.gov/pubmed/26810479 http://dx.doi.org/10.1186/s12864-016-2396-9 |
work_keys_str_mv | AT yatsuryohei rnaseqanalysisofthegonadaltranscriptomeduringalligatormississippiensistemperaturedependentsexdeterminationanddifferentiation AT miyagawashinichi rnaseqanalysisofthegonadaltranscriptomeduringalligatormississippiensistemperaturedependentsexdeterminationanddifferentiation AT kohnosatomi rnaseqanalysisofthegonadaltranscriptomeduringalligatormississippiensistemperaturedependentsexdeterminationanddifferentiation AT parrottbenjaminb rnaseqanalysisofthegonadaltranscriptomeduringalligatormississippiensistemperaturedependentsexdeterminationanddifferentiation AT yamaguchikatsushi rnaseqanalysisofthegonadaltranscriptomeduringalligatormississippiensistemperaturedependentsexdeterminationanddifferentiation AT oginoyukiko rnaseqanalysisofthegonadaltranscriptomeduringalligatormississippiensistemperaturedependentsexdeterminationanddifferentiation AT miyakawahitoshi rnaseqanalysisofthegonadaltranscriptomeduringalligatormississippiensistemperaturedependentsexdeterminationanddifferentiation AT lowersrussellh rnaseqanalysisofthegonadaltranscriptomeduringalligatormississippiensistemperaturedependentsexdeterminationanddifferentiation AT shigenobushuji rnaseqanalysisofthegonadaltranscriptomeduringalligatormississippiensistemperaturedependentsexdeterminationanddifferentiation AT guillettelouisj rnaseqanalysisofthegonadaltranscriptomeduringalligatormississippiensistemperaturedependentsexdeterminationanddifferentiation AT iguchitaisen rnaseqanalysisofthegonadaltranscriptomeduringalligatormississippiensistemperaturedependentsexdeterminationanddifferentiation |