Cargando…
More results on Simpson’s type inequality through convexity for twice differentiable continuous mappings
Our aim in this article is to incorporate the notion of “strongly s-convex function” and prove a new integral identity. Some new inequalities of Simpson type for strongly s-convex function utilizing integral identity and Holder’s inequality are considered.
Autores principales: | Hussain, Sabir, Qaisar, Shahid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728168/ https://www.ncbi.nlm.nih.gov/pubmed/26844024 http://dx.doi.org/10.1186/s40064-016-1683-x |
Ejemplares similares
-
k-fractional integral trapezium-like inequalities through [Formula: see text] -convex and [Formula: see text] -convex mappings
por: Wang, Hao, et al.
Publicado: (2017) -
Generalized geometrically convex functions and inequalities
por: Noor, Muhammad Aslam, et al.
Publicado: (2017) -
Trapezoidal-Type Inequalities for Strongly Convex and Quasi-Convex Functions via Post-Quantum Calculus
por: Kalsoom, Humaira, et al.
Publicado: (2021) -
Certain new bounds considering the weighted Simpson-like type inequality and applications
por: Luo, Chun-Yan, et al.
Publicado: (2018) -
Hermite–Hadamard type inequalities for n-times differentiable and geometrically quasi-convex functions
por: Zhang, Jun, et al.
Publicado: (2016)