Cargando…
Polarization of the epithelial layer and apical localization of integrins are required for engulfment of apoptotic cells in the Drosophila ovary
Inefficient clearance of dead cells or debris by epithelial cells can lead to or exacerbate debilitating conditions such as retinitis pigmentosa, macular degeneration, chronic obstructive pulmonary disease and asthma. Despite the importance of engulfment by epithelial cells, little is known about th...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728319/ https://www.ncbi.nlm.nih.gov/pubmed/26398951 http://dx.doi.org/10.1242/dmm.021998 |
_version_ | 1782412086650863616 |
---|---|
author | Meehan, Tracy L. Kleinsorge, Sarah E. Timmons, Allison K. Taylor, Jeffrey D. McCall, Kimberly |
author_facet | Meehan, Tracy L. Kleinsorge, Sarah E. Timmons, Allison K. Taylor, Jeffrey D. McCall, Kimberly |
author_sort | Meehan, Tracy L. |
collection | PubMed |
description | Inefficient clearance of dead cells or debris by epithelial cells can lead to or exacerbate debilitating conditions such as retinitis pigmentosa, macular degeneration, chronic obstructive pulmonary disease and asthma. Despite the importance of engulfment by epithelial cells, little is known about the molecular changes that are required within these cells. The misregulation of integrins has previously been associated with disease states, suggesting that a better understanding of the regulation of receptor trafficking could be key to treating diseases caused by defects in phagocytosis. Here, we demonstrate that the integrin heterodimer αPS3/βPS becomes apically enriched and is required for engulfment by the epithelial follicle cells of the Drosophila ovary. We found that integrin heterodimer localization and function is largely directed by the α-subunit. Moreover, proper cell polarity promotes asymmetric integrin enrichment, suggesting that αPS3/βPS trafficking occurs in a polarized fashion. We show that several genes previously known for their roles in trafficking and cell migration are also required for engulfment. Moreover, as in mammals, the same α-integrin subunit is required by professional and non-professional phagocytes and migrating cells in Drosophila. Our findings suggest that migrating and engulfing cells use common machinery, and demonstrate a crucial role for integrin function and polarized trafficking of integrin subunits during engulfment. This study also establishes the epithelial follicle cells of the Drosophila ovary as a powerful model for understanding the molecular changes required for engulfment by a polarized epithelium. |
format | Online Article Text |
id | pubmed-4728319 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | The Company of Biologists |
record_format | MEDLINE/PubMed |
spelling | pubmed-47283192016-02-01 Polarization of the epithelial layer and apical localization of integrins are required for engulfment of apoptotic cells in the Drosophila ovary Meehan, Tracy L. Kleinsorge, Sarah E. Timmons, Allison K. Taylor, Jeffrey D. McCall, Kimberly Dis Model Mech Research Article Inefficient clearance of dead cells or debris by epithelial cells can lead to or exacerbate debilitating conditions such as retinitis pigmentosa, macular degeneration, chronic obstructive pulmonary disease and asthma. Despite the importance of engulfment by epithelial cells, little is known about the molecular changes that are required within these cells. The misregulation of integrins has previously been associated with disease states, suggesting that a better understanding of the regulation of receptor trafficking could be key to treating diseases caused by defects in phagocytosis. Here, we demonstrate that the integrin heterodimer αPS3/βPS becomes apically enriched and is required for engulfment by the epithelial follicle cells of the Drosophila ovary. We found that integrin heterodimer localization and function is largely directed by the α-subunit. Moreover, proper cell polarity promotes asymmetric integrin enrichment, suggesting that αPS3/βPS trafficking occurs in a polarized fashion. We show that several genes previously known for their roles in trafficking and cell migration are also required for engulfment. Moreover, as in mammals, the same α-integrin subunit is required by professional and non-professional phagocytes and migrating cells in Drosophila. Our findings suggest that migrating and engulfing cells use common machinery, and demonstrate a crucial role for integrin function and polarized trafficking of integrin subunits during engulfment. This study also establishes the epithelial follicle cells of the Drosophila ovary as a powerful model for understanding the molecular changes required for engulfment by a polarized epithelium. The Company of Biologists 2015-12-01 /pmc/articles/PMC4728319/ /pubmed/26398951 http://dx.doi.org/10.1242/dmm.021998 Text en © 2015. Published by The Company of Biologists Ltd http://creativecommons.org/licenses/by/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | Research Article Meehan, Tracy L. Kleinsorge, Sarah E. Timmons, Allison K. Taylor, Jeffrey D. McCall, Kimberly Polarization of the epithelial layer and apical localization of integrins are required for engulfment of apoptotic cells in the Drosophila ovary |
title | Polarization of the epithelial layer and apical localization of integrins are required for engulfment of apoptotic cells in the Drosophila ovary |
title_full | Polarization of the epithelial layer and apical localization of integrins are required for engulfment of apoptotic cells in the Drosophila ovary |
title_fullStr | Polarization of the epithelial layer and apical localization of integrins are required for engulfment of apoptotic cells in the Drosophila ovary |
title_full_unstemmed | Polarization of the epithelial layer and apical localization of integrins are required for engulfment of apoptotic cells in the Drosophila ovary |
title_short | Polarization of the epithelial layer and apical localization of integrins are required for engulfment of apoptotic cells in the Drosophila ovary |
title_sort | polarization of the epithelial layer and apical localization of integrins are required for engulfment of apoptotic cells in the drosophila ovary |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728319/ https://www.ncbi.nlm.nih.gov/pubmed/26398951 http://dx.doi.org/10.1242/dmm.021998 |
work_keys_str_mv | AT meehantracyl polarizationoftheepitheliallayerandapicallocalizationofintegrinsarerequiredforengulfmentofapoptoticcellsinthedrosophilaovary AT kleinsorgesarahe polarizationoftheepitheliallayerandapicallocalizationofintegrinsarerequiredforengulfmentofapoptoticcellsinthedrosophilaovary AT timmonsallisonk polarizationoftheepitheliallayerandapicallocalizationofintegrinsarerequiredforengulfmentofapoptoticcellsinthedrosophilaovary AT taylorjeffreyd polarizationoftheepitheliallayerandapicallocalizationofintegrinsarerequiredforengulfmentofapoptoticcellsinthedrosophilaovary AT mccallkimberly polarizationoftheepitheliallayerandapicallocalizationofintegrinsarerequiredforengulfmentofapoptoticcellsinthedrosophilaovary |