Cargando…
The prediction accuracy of dynamic mixed-effects models in clustered data
BACKGROUND: Clinical prediction models often fail to generalize in the context of clustered data, because most models fail to account for heterogeneity in outcome values and covariate effects across clusters. Furthermore, standard approaches for modeling clustered data, including generalized linear...
Autores principales: | Finkelman, Brian S., French, Benjamin, Kimmel, Stephen E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728760/ https://www.ncbi.nlm.nih.gov/pubmed/26819631 http://dx.doi.org/10.1186/s13040-016-0084-6 |
Ejemplares similares
-
Comparison of dynamic updating strategies for clinical prediction models
por: Schnellinger, Erin M., et al.
Publicado: (2021) -
Improving the accuracy of template-based predictions by mixing and matching between initial models
por: Liu, Tianyun, et al.
Publicado: (2008) -
Clustering of samples and variables with mixed-type data
por: Hummel, Manuela, et al.
Publicado: (2017) -
Dynamic Mixed Models for Familial Longitudinal Data
por: Sutradhar, Brajendra C
Publicado: (2011) -
Predictive accuracy of particle filtering in dynamic models supporting outbreak projections
por: Safarishahrbijari, Anahita, et al.
Publicado: (2017)