Cargando…
A survey of best practices for RNA-seq data analysis
RNA-sequencing (RNA-seq) has a wide variety of applications, but no single analysis pipeline can be used in all cases. We review all of the major steps in RNA-seq data analysis, including experimental design, quality control, read alignment, quantification of gene and transcript levels, visualizatio...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728800/ https://www.ncbi.nlm.nih.gov/pubmed/26813401 http://dx.doi.org/10.1186/s13059-016-0881-8 |
_version_ | 1782412181589983232 |
---|---|
author | Conesa, Ana Madrigal, Pedro Tarazona, Sonia Gomez-Cabrero, David Cervera, Alejandra McPherson, Andrew Szcześniak, Michał Wojciech Gaffney, Daniel J. Elo, Laura L. Zhang, Xuegong Mortazavi, Ali |
author_facet | Conesa, Ana Madrigal, Pedro Tarazona, Sonia Gomez-Cabrero, David Cervera, Alejandra McPherson, Andrew Szcześniak, Michał Wojciech Gaffney, Daniel J. Elo, Laura L. Zhang, Xuegong Mortazavi, Ali |
author_sort | Conesa, Ana |
collection | PubMed |
description | RNA-sequencing (RNA-seq) has a wide variety of applications, but no single analysis pipeline can be used in all cases. We review all of the major steps in RNA-seq data analysis, including experimental design, quality control, read alignment, quantification of gene and transcript levels, visualization, differential gene expression, alternative splicing, functional analysis, gene fusion detection and eQTL mapping. We highlight the challenges associated with each step. We discuss the analysis of small RNAs and the integration of RNA-seq with other functional genomics techniques. Finally, we discuss the outlook for novel technologies that are changing the state of the art in transcriptomics. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-016-0881-8) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4728800 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-47288002016-01-28 A survey of best practices for RNA-seq data analysis Conesa, Ana Madrigal, Pedro Tarazona, Sonia Gomez-Cabrero, David Cervera, Alejandra McPherson, Andrew Szcześniak, Michał Wojciech Gaffney, Daniel J. Elo, Laura L. Zhang, Xuegong Mortazavi, Ali Genome Biol Review RNA-sequencing (RNA-seq) has a wide variety of applications, but no single analysis pipeline can be used in all cases. We review all of the major steps in RNA-seq data analysis, including experimental design, quality control, read alignment, quantification of gene and transcript levels, visualization, differential gene expression, alternative splicing, functional analysis, gene fusion detection and eQTL mapping. We highlight the challenges associated with each step. We discuss the analysis of small RNAs and the integration of RNA-seq with other functional genomics techniques. Finally, we discuss the outlook for novel technologies that are changing the state of the art in transcriptomics. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-016-0881-8) contains supplementary material, which is available to authorized users. BioMed Central 2016-01-26 2016 /pmc/articles/PMC4728800/ /pubmed/26813401 http://dx.doi.org/10.1186/s13059-016-0881-8 Text en © Conesa et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Review Conesa, Ana Madrigal, Pedro Tarazona, Sonia Gomez-Cabrero, David Cervera, Alejandra McPherson, Andrew Szcześniak, Michał Wojciech Gaffney, Daniel J. Elo, Laura L. Zhang, Xuegong Mortazavi, Ali A survey of best practices for RNA-seq data analysis |
title | A survey of best practices for RNA-seq data analysis |
title_full | A survey of best practices for RNA-seq data analysis |
title_fullStr | A survey of best practices for RNA-seq data analysis |
title_full_unstemmed | A survey of best practices for RNA-seq data analysis |
title_short | A survey of best practices for RNA-seq data analysis |
title_sort | survey of best practices for rna-seq data analysis |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728800/ https://www.ncbi.nlm.nih.gov/pubmed/26813401 http://dx.doi.org/10.1186/s13059-016-0881-8 |
work_keys_str_mv | AT conesaana asurveyofbestpracticesforrnaseqdataanalysis AT madrigalpedro asurveyofbestpracticesforrnaseqdataanalysis AT tarazonasonia asurveyofbestpracticesforrnaseqdataanalysis AT gomezcabrerodavid asurveyofbestpracticesforrnaseqdataanalysis AT cerveraalejandra asurveyofbestpracticesforrnaseqdataanalysis AT mcphersonandrew asurveyofbestpracticesforrnaseqdataanalysis AT szczesniakmichałwojciech asurveyofbestpracticesforrnaseqdataanalysis AT gaffneydanielj asurveyofbestpracticesforrnaseqdataanalysis AT elolaural asurveyofbestpracticesforrnaseqdataanalysis AT zhangxuegong asurveyofbestpracticesforrnaseqdataanalysis AT mortazaviali asurveyofbestpracticesforrnaseqdataanalysis AT conesaana surveyofbestpracticesforrnaseqdataanalysis AT madrigalpedro surveyofbestpracticesforrnaseqdataanalysis AT tarazonasonia surveyofbestpracticesforrnaseqdataanalysis AT gomezcabrerodavid surveyofbestpracticesforrnaseqdataanalysis AT cerveraalejandra surveyofbestpracticesforrnaseqdataanalysis AT mcphersonandrew surveyofbestpracticesforrnaseqdataanalysis AT szczesniakmichałwojciech surveyofbestpracticesforrnaseqdataanalysis AT gaffneydanielj surveyofbestpracticesforrnaseqdataanalysis AT elolaural surveyofbestpracticesforrnaseqdataanalysis AT zhangxuegong surveyofbestpracticesforrnaseqdataanalysis AT mortazaviali surveyofbestpracticesforrnaseqdataanalysis |