Cargando…

A survey of best practices for RNA-seq data analysis

RNA-sequencing (RNA-seq) has a wide variety of applications, but no single analysis pipeline can be used in all cases. We review all of the major steps in RNA-seq data analysis, including experimental design, quality control, read alignment, quantification of gene and transcript levels, visualizatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Conesa, Ana, Madrigal, Pedro, Tarazona, Sonia, Gomez-Cabrero, David, Cervera, Alejandra, McPherson, Andrew, Szcześniak, Michał Wojciech, Gaffney, Daniel J., Elo, Laura L., Zhang, Xuegong, Mortazavi, Ali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728800/
https://www.ncbi.nlm.nih.gov/pubmed/26813401
http://dx.doi.org/10.1186/s13059-016-0881-8
_version_ 1782412181589983232
author Conesa, Ana
Madrigal, Pedro
Tarazona, Sonia
Gomez-Cabrero, David
Cervera, Alejandra
McPherson, Andrew
Szcześniak, Michał Wojciech
Gaffney, Daniel J.
Elo, Laura L.
Zhang, Xuegong
Mortazavi, Ali
author_facet Conesa, Ana
Madrigal, Pedro
Tarazona, Sonia
Gomez-Cabrero, David
Cervera, Alejandra
McPherson, Andrew
Szcześniak, Michał Wojciech
Gaffney, Daniel J.
Elo, Laura L.
Zhang, Xuegong
Mortazavi, Ali
author_sort Conesa, Ana
collection PubMed
description RNA-sequencing (RNA-seq) has a wide variety of applications, but no single analysis pipeline can be used in all cases. We review all of the major steps in RNA-seq data analysis, including experimental design, quality control, read alignment, quantification of gene and transcript levels, visualization, differential gene expression, alternative splicing, functional analysis, gene fusion detection and eQTL mapping. We highlight the challenges associated with each step. We discuss the analysis of small RNAs and the integration of RNA-seq with other functional genomics techniques. Finally, we discuss the outlook for novel technologies that are changing the state of the art in transcriptomics. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-016-0881-8) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4728800
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-47288002016-01-28 A survey of best practices for RNA-seq data analysis Conesa, Ana Madrigal, Pedro Tarazona, Sonia Gomez-Cabrero, David Cervera, Alejandra McPherson, Andrew Szcześniak, Michał Wojciech Gaffney, Daniel J. Elo, Laura L. Zhang, Xuegong Mortazavi, Ali Genome Biol Review RNA-sequencing (RNA-seq) has a wide variety of applications, but no single analysis pipeline can be used in all cases. We review all of the major steps in RNA-seq data analysis, including experimental design, quality control, read alignment, quantification of gene and transcript levels, visualization, differential gene expression, alternative splicing, functional analysis, gene fusion detection and eQTL mapping. We highlight the challenges associated with each step. We discuss the analysis of small RNAs and the integration of RNA-seq with other functional genomics techniques. Finally, we discuss the outlook for novel technologies that are changing the state of the art in transcriptomics. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-016-0881-8) contains supplementary material, which is available to authorized users. BioMed Central 2016-01-26 2016 /pmc/articles/PMC4728800/ /pubmed/26813401 http://dx.doi.org/10.1186/s13059-016-0881-8 Text en © Conesa et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Review
Conesa, Ana
Madrigal, Pedro
Tarazona, Sonia
Gomez-Cabrero, David
Cervera, Alejandra
McPherson, Andrew
Szcześniak, Michał Wojciech
Gaffney, Daniel J.
Elo, Laura L.
Zhang, Xuegong
Mortazavi, Ali
A survey of best practices for RNA-seq data analysis
title A survey of best practices for RNA-seq data analysis
title_full A survey of best practices for RNA-seq data analysis
title_fullStr A survey of best practices for RNA-seq data analysis
title_full_unstemmed A survey of best practices for RNA-seq data analysis
title_short A survey of best practices for RNA-seq data analysis
title_sort survey of best practices for rna-seq data analysis
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728800/
https://www.ncbi.nlm.nih.gov/pubmed/26813401
http://dx.doi.org/10.1186/s13059-016-0881-8
work_keys_str_mv AT conesaana asurveyofbestpracticesforrnaseqdataanalysis
AT madrigalpedro asurveyofbestpracticesforrnaseqdataanalysis
AT tarazonasonia asurveyofbestpracticesforrnaseqdataanalysis
AT gomezcabrerodavid asurveyofbestpracticesforrnaseqdataanalysis
AT cerveraalejandra asurveyofbestpracticesforrnaseqdataanalysis
AT mcphersonandrew asurveyofbestpracticesforrnaseqdataanalysis
AT szczesniakmichałwojciech asurveyofbestpracticesforrnaseqdataanalysis
AT gaffneydanielj asurveyofbestpracticesforrnaseqdataanalysis
AT elolaural asurveyofbestpracticesforrnaseqdataanalysis
AT zhangxuegong asurveyofbestpracticesforrnaseqdataanalysis
AT mortazaviali asurveyofbestpracticesforrnaseqdataanalysis
AT conesaana surveyofbestpracticesforrnaseqdataanalysis
AT madrigalpedro surveyofbestpracticesforrnaseqdataanalysis
AT tarazonasonia surveyofbestpracticesforrnaseqdataanalysis
AT gomezcabrerodavid surveyofbestpracticesforrnaseqdataanalysis
AT cerveraalejandra surveyofbestpracticesforrnaseqdataanalysis
AT mcphersonandrew surveyofbestpracticesforrnaseqdataanalysis
AT szczesniakmichałwojciech surveyofbestpracticesforrnaseqdataanalysis
AT gaffneydanielj surveyofbestpracticesforrnaseqdataanalysis
AT elolaural surveyofbestpracticesforrnaseqdataanalysis
AT zhangxuegong surveyofbestpracticesforrnaseqdataanalysis
AT mortazaviali surveyofbestpracticesforrnaseqdataanalysis