Cargando…
Dose and linear energy transfer distributions of primary and secondary particles in carbon ion radiation therapy: A Monte Carlo simulation study in water
The factors influencing carbon ion therapy can be predicted from accurate knowledge about the production of secondary particles from the interaction of carbon ions in water/tissue-like materials, and subsequently the interaction of the secondary particles in the same materials. The secondary particl...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728892/ https://www.ncbi.nlm.nih.gov/pubmed/26865757 http://dx.doi.org/10.4103/0971-6203.170785 |
_version_ | 1782412193425260544 |
---|---|
author | Johnson, Daniel Chen, Yong Ahmad, Salahuddin |
author_facet | Johnson, Daniel Chen, Yong Ahmad, Salahuddin |
author_sort | Johnson, Daniel |
collection | PubMed |
description | The factors influencing carbon ion therapy can be predicted from accurate knowledge about the production of secondary particles from the interaction of carbon ions in water/tissue-like materials, and subsequently the interaction of the secondary particles in the same materials. The secondary particles may have linear energy transfer (LET) values that potentially increase the relative biological effectiveness of the beam. Our primary objective in this study was to classify and quantify the secondary particles produced, their dose averaged LETs, and their dose contributions in the absorbing material. A 1 mm diameter carbon ion pencil beam with energies per nucleon of 155, 262, and 369 MeV was used in a geometry and tracking 4 Monte Carlo simulation to interact in a 27 L water phantom containing 3000 rectangular detector voxels. The dose-averaged LET and the dose contributions of primary and secondary particles were calculated from the simulation. The results of the simulations show that the secondary particles that contributed a major dose component had LETs <100 keV/µm. The secondary particles with LETs >600 keV/µm contributed only <0.3% of the dose. |
format | Online Article Text |
id | pubmed-4728892 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Medknow Publications & Media Pvt Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-47288922016-02-10 Dose and linear energy transfer distributions of primary and secondary particles in carbon ion radiation therapy: A Monte Carlo simulation study in water Johnson, Daniel Chen, Yong Ahmad, Salahuddin J Med Phys Technical Note The factors influencing carbon ion therapy can be predicted from accurate knowledge about the production of secondary particles from the interaction of carbon ions in water/tissue-like materials, and subsequently the interaction of the secondary particles in the same materials. The secondary particles may have linear energy transfer (LET) values that potentially increase the relative biological effectiveness of the beam. Our primary objective in this study was to classify and quantify the secondary particles produced, their dose averaged LETs, and their dose contributions in the absorbing material. A 1 mm diameter carbon ion pencil beam with energies per nucleon of 155, 262, and 369 MeV was used in a geometry and tracking 4 Monte Carlo simulation to interact in a 27 L water phantom containing 3000 rectangular detector voxels. The dose-averaged LET and the dose contributions of primary and secondary particles were calculated from the simulation. The results of the simulations show that the secondary particles that contributed a major dose component had LETs <100 keV/µm. The secondary particles with LETs >600 keV/µm contributed only <0.3% of the dose. Medknow Publications & Media Pvt Ltd 2015 /pmc/articles/PMC4728892/ /pubmed/26865757 http://dx.doi.org/10.4103/0971-6203.170785 Text en Copyright: © Journal of Medical Physics http://creativecommons.org/licenses/by-nc-sa/3.0 This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms. |
spellingShingle | Technical Note Johnson, Daniel Chen, Yong Ahmad, Salahuddin Dose and linear energy transfer distributions of primary and secondary particles in carbon ion radiation therapy: A Monte Carlo simulation study in water |
title | Dose and linear energy transfer distributions of primary and secondary particles in carbon ion radiation therapy: A Monte Carlo simulation study in water |
title_full | Dose and linear energy transfer distributions of primary and secondary particles in carbon ion radiation therapy: A Monte Carlo simulation study in water |
title_fullStr | Dose and linear energy transfer distributions of primary and secondary particles in carbon ion radiation therapy: A Monte Carlo simulation study in water |
title_full_unstemmed | Dose and linear energy transfer distributions of primary and secondary particles in carbon ion radiation therapy: A Monte Carlo simulation study in water |
title_short | Dose and linear energy transfer distributions of primary and secondary particles in carbon ion radiation therapy: A Monte Carlo simulation study in water |
title_sort | dose and linear energy transfer distributions of primary and secondary particles in carbon ion radiation therapy: a monte carlo simulation study in water |
topic | Technical Note |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728892/ https://www.ncbi.nlm.nih.gov/pubmed/26865757 http://dx.doi.org/10.4103/0971-6203.170785 |
work_keys_str_mv | AT johnsondaniel doseandlinearenergytransferdistributionsofprimaryandsecondaryparticlesincarbonionradiationtherapyamontecarlosimulationstudyinwater AT chenyong doseandlinearenergytransferdistributionsofprimaryandsecondaryparticlesincarbonionradiationtherapyamontecarlosimulationstudyinwater AT ahmadsalahuddin doseandlinearenergytransferdistributionsofprimaryandsecondaryparticlesincarbonionradiationtherapyamontecarlosimulationstudyinwater |